Numerical methodΒΆ

I integrate the following three equations in time:

\[\der{\wav{\ux}{\ix \iy}}{t} = \wav{h_x}{\ix \iy} + \frac{\mkx}{\mkx^2 + \mky^2} \left( \mkx \wav{h_x}{\ix \iy} + \mky \wav{h_y}{\ix \iy} \right) - \frac{1}{Re} \left( \mkx^2 + \mky^2 \right) \wav{\ux}{\ix \iy},\]
\[\der{\wav{\uy}{\ix \iy}}{t} = \wav{h_y}{\ix \iy} + \frac{\mky}{\mkx^2 + \mky^2} \left( \mkx \wav{h_x}{\ix \iy} + \mky \wav{h_y}{\ix \iy} \right) - \frac{1}{Re} \left( \mkx^2 + \mky^2 \right) \wav{\uy}{\ix \iy},\]
\[\der{\wav{T}{\ix \iy}}{t} = \wav{g}{\ix \iy} - \frac{1}{Re Sc} \left( \mkx^2 + \mky^2 \right) \wav{T}{\ix \iy},\]

where the non-linear terms are given by

\[\wav{h_x}{\ix \iy} \equiv - I \mkx \sum_{\ix_0^{\prime} + \ix_1^{\prime} = \ix} \sum_{\iy_0^{\prime} + \iy_1^{\prime} = \iy} \wav{\ux}{\ix_0^{\prime} \iy_0^{\prime}} \wav{\ux}{\ix_1^{\prime} \iy_1^{\prime}} - I \mky \sum_{\ix_0^{\prime} + \ix_1^{\prime} = \ix} \sum_{\iy_0^{\prime} + \iy_1^{\prime} = \iy} \wav{\uy}{\ix_0^{\prime} \iy_0^{\prime}} \wav{\ux}{\ix_1^{\prime} \iy_1^{\prime}} + \wav{a_x}{\ix \iy},\]
\[\wav{h_y}{\ix \iy} \equiv - I \mkx \sum_{\ix_0^{\prime} + \ix_1^{\prime} = \ix} \sum_{\iy_0^{\prime} + \iy_1^{\prime} = \iy} \wav{\ux}{\ix_0^{\prime} \iy_0^{\prime}} \wav{\uy}{\ix_1^{\prime} \iy_1^{\prime}} - I \mky \sum_{\ix_0^{\prime} + \ix_1^{\prime} = \ix} \sum_{\iy_0^{\prime} + \iy_1^{\prime} = \iy} \wav{\uy}{\ix_0^{\prime} \iy_0^{\prime}} \wav{\uy}{\ix_1^{\prime} \iy_1^{\prime}} + \wav{a_y}{\ix \iy},\]
\[\wav{g}{\ix \iy} \equiv - I \mkx \sum_{\ix_0^{\prime} + \ix_1^{\prime} = \ix} \sum_{\iy_0^{\prime} + \iy_1^{\prime} = \iy} \wav{\ux}{\ix_0^{\prime} \iy_0^{\prime}} \wav{ T}{\ix_1^{\prime} \iy_1^{\prime}} - I \mky \sum_{\ix_0^{\prime} + \ix_1^{\prime} = \ix} \sum_{\iy_0^{\prime} + \iy_1^{\prime} = \iy} \wav{\uy}{\ix_0^{\prime} \iy_0^{\prime}} \wav{ T}{\ix_1^{\prime} \iy_1^{\prime}}.\]

Note

For now the external forcing terms \(a_i\) are omitted.