Equations in the spectral domain

I apply the Fourier series expansion to the governing equations to describe them in the spectral domain.

Incompressibility

\[\lx \ly \left( I \kx \frac{2 \pi}{\lx} \wav{\ux}{\kx \ky} + I \ky \frac{2 \pi}{\ly} \wav{\uy}{\kx \ky} \right) = 0.\]

Temporal evolution

\[ \begin{align}\begin{aligned}\lx \ly \der{\wav{\ux}{\kx \ky}}{t},\\\lx \ly \der{\wav{\uy}{\kx \ky}}{t},\\\lx \ly \der{\wav{T}{\kx \ky}}{t}.\end{aligned}\end{align} \]

Advective terms

The external forcing terms \(\wav{a_x}{\kx \ky}\) and \(\wav{a_y}{\kx \ky}\) are included.

\[ \begin{align}\begin{aligned}\lx \ly \left[ - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_x}{\kx \ky} \right],\\\lx \ly \left[ - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_y}{\kx \ky} \right],\\\lx \ly \left[ - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}} \right].\end{aligned}\end{align} \]

Pressure-gradient terms

\[ \begin{align}\begin{aligned}- \lx \ly I \kx \frac{2 \pi}{\lx} \wav{p}{\kx \ky},\\- \lx \ly I \ky \frac{2 \pi}{\ly} \wav{p}{\kx \ky}.\end{aligned}\end{align} \]

Diffusive terms

\[ \begin{align}\begin{aligned}- \frac{1}{Re} \lx \ly \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\ux}{\kx \ky},\\- \frac{1}{Re} \lx \ly \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\uy}{\kx \ky},\\- \frac{1}{Re Sc} \lx \ly \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{ T}{\kx \ky}.\end{aligned}\end{align} \]

Forcing terms

They are embedded in the advective terms.

Summary

\[I \kx \frac{2 \pi}{\lx} \wav{\ux}{\kx \ky} + I \ky \frac{2 \pi}{\ly} \wav{\uy}{\kx \ky} = 0.\]
\[ \begin{align}\begin{aligned}\der{\wav{\ux}{\kx \ky}}{t} = \wav{h_x}{\kx \ky} - I \kx \frac{2 \pi}{\lx} \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\ux}{\kx \ky},\\\der{\wav{\uy}{\kx \ky}}{t} = \wav{h_y}{\kx \ky} - I \ky \frac{2 \pi}{\ly} \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\uy}{\kx \ky},\\\der{\wav{T}{\kx \ky}}{t} = \wav{g}{\kx \ky} - \frac{1}{Re Sc} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{T}{\kx \ky},\end{aligned}\end{align} \]

where

\[ \begin{align}\begin{aligned}\wav{h_x}{\kx \ky} \equiv - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_x}{\kx \ky},\\\wav{h_y}{\kx \ky} \equiv - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_y}{\kx \ky},\\\wav{g}{\kx \ky} \equiv - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}}.\end{aligned}\end{align} \]

To eliminate the pressure from the momentum equation, I consider the inner product of the wave vector and the momentum balance, namely the sum of

\[I \kx \frac{2 \pi}{\lx} \der{\wav{\ux}{\kx \ky}}{t} = I \kx \frac{2 \pi}{\lx} \wav{h_x}{\kx \ky} + \left( \kx \frac{2 \pi}{\lx} \right)^2 \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] I \kx \frac{2 \pi}{\lx} \wav{\ux}{\kx \ky}\]

and

\[I \ky \frac{2 \pi}{\ly} \der{\wav{\uy}{\kx \ky}}{t} = I \ky \frac{2 \pi}{\ly} \wav{h_y}{\kx \ky} + \left( \ky \frac{2 \pi}{\ly} \right)^2 \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] I \ky \frac{2 \pi}{\ly} \wav{\uy}{\kx \ky}.\]

Since the temporal derivative terms and the diffusive terms are zero because of the incompressibility, I obtain

\[- I \kx \frac{2 \pi}{\lx} \wav{h_x}{\kx \ky} - I \ky \frac{2 \pi}{\ly} \wav{h_y}{\kx \ky} = \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{p}{\kx \ky},\]

which is used to eliminate the pressure, giving

\[ \begin{align}\begin{aligned}\der{\wav{\ux}{\mkx \mky}}{t} = \wav{h_x}{\mkx \mky} - \frac{\mkx}{\mkx^2 + \mky^2} \left( \mkx \wav{h_x}{\mkx \mky} + \mky \wav{h_y}{\mkx \mky} \right) - \frac{1}{Re} \left( \mkx^2 + \mky^2 \right) \wav{\ux}{\mkx \mky},\\\der{\wav{\uy}{\mkx \mky}}{t} = \wav{h_y}{\mkx \mky} - \frac{\mky}{\mkx^2 + \mky^2} \left( \mkx \wav{h_x}{\mkx \mky} + \mky \wav{h_y}{\mkx \mky} \right) - \frac{1}{Re} \left( \mkx^2 + \mky^2 \right) \wav{\uy}{\mkx \mky}.\end{aligned}\end{align} \]

Recall that

\[ \begin{align}\begin{aligned}\mkx \equiv \kx \frac{2 \pi}{\lx},\\\mky \equiv \ky \frac{2 \pi}{\ly}.\end{aligned}\end{align} \]