.. _spectral: ################################ Equations in the spectral domain ################################ I apply the Fourier series expansion to the governing equations to describe them in the spectral domain. ***************** Incompressibility ***************** .. math:: \lx \ly \left( I \kx \frac{2 \pi}{\lx} \wav{\ux}{\kx \ky} + I \ky \frac{2 \pi}{\ly} \wav{\uy}{\kx \ky} \right) = 0. ****************** Temporal evolution ****************** .. math:: \lx \ly \der{\wav{\ux}{\kx \ky}}{t}, \lx \ly \der{\wav{\uy}{\kx \ky}}{t}, \lx \ly \der{\wav{T}{\kx \ky}}{t}. *************** Advective terms *************** The external forcing terms :math:`\wav{a_x}{\kx \ky}` and :math:`\wav{a_y}{\kx \ky}` are included. .. math:: \lx \ly \left[ - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_x}{\kx \ky} \right], \lx \ly \left[ - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_y}{\kx \ky} \right], \lx \ly \left[ - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}} \right]. *********************** Pressure-gradient terms *********************** .. math:: - \lx \ly I \kx \frac{2 \pi}{\lx} \wav{p}{\kx \ky}, - \lx \ly I \ky \frac{2 \pi}{\ly} \wav{p}{\kx \ky}. *************** Diffusive terms *************** .. math:: - \frac{1}{Re} \lx \ly \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\ux}{\kx \ky}, - \frac{1}{Re} \lx \ly \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\uy}{\kx \ky}, - \frac{1}{Re Sc} \lx \ly \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{ T}{\kx \ky}. ************* Forcing terms ************* They are embedded in the advective terms. ******* Summary ******* .. math:: I \kx \frac{2 \pi}{\lx} \wav{\ux}{\kx \ky} + I \ky \frac{2 \pi}{\ly} \wav{\uy}{\kx \ky} = 0. .. math:: \der{\wav{\ux}{\kx \ky}}{t} = \wav{h_x}{\kx \ky} - I \kx \frac{2 \pi}{\lx} \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\ux}{\kx \ky}, \der{\wav{\uy}{\kx \ky}}{t} = \wav{h_y}{\kx \ky} - I \ky \frac{2 \pi}{\ly} \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{\uy}{\kx \ky}, \der{\wav{T}{\kx \ky}}{t} = \wav{g}{\kx \ky} - \frac{1}{Re Sc} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{T}{\kx \ky}, where .. math:: \wav{h_x}{\kx \ky} \equiv - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\ux}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_x}{\kx \ky}, \wav{h_y}{\kx \ky} \equiv - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{\uy}{\kx_1^{\prime} \ky_1^{\prime}} + \wav{a_y}{\kx \ky}, \wav{g}{\kx \ky} \equiv - I \kx \frac{2 \pi}{\lx} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\ux}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}} - I \ky \frac{2 \pi}{\ly} \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{\uy}{\kx_0^{\prime} \ky_0^{\prime}} \wav{ T}{\kx_1^{\prime} \ky_1^{\prime}}. To eliminate the pressure from the momentum equation, I consider the inner product of the wave vector and the momentum balance, namely the sum of .. math:: I \kx \frac{2 \pi}{\lx} \der{\wav{\ux}{\kx \ky}}{t} = I \kx \frac{2 \pi}{\lx} \wav{h_x}{\kx \ky} + \left( \kx \frac{2 \pi}{\lx} \right)^2 \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] I \kx \frac{2 \pi}{\lx} \wav{\ux}{\kx \ky} and .. math:: I \ky \frac{2 \pi}{\ly} \der{\wav{\uy}{\kx \ky}}{t} = I \ky \frac{2 \pi}{\ly} \wav{h_y}{\kx \ky} + \left( \ky \frac{2 \pi}{\ly} \right)^2 \wav{p}{\kx \ky} - \frac{1}{Re} \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] I \ky \frac{2 \pi}{\ly} \wav{\uy}{\kx \ky}. Since the temporal derivative terms and the diffusive terms are zero because of the incompressibility, I obtain .. math:: - I \kx \frac{2 \pi}{\lx} \wav{h_x}{\kx \ky} - I \ky \frac{2 \pi}{\ly} \wav{h_y}{\kx \ky} = \left[ \left( \kx \frac{2 \pi}{\lx} \right)^2 + \left( \ky \frac{2 \pi}{\ly} \right)^2 \right] \wav{p}{\kx \ky}, which is used to eliminate the pressure, giving .. math:: \der{\wav{\ux}{\mkx \mky}}{t} = \wav{h_x}{\mkx \mky} - \frac{\mkx}{\mkx^2 + \mky^2} \left( \mkx \wav{h_x}{\mkx \mky} + \mky \wav{h_y}{\mkx \mky} \right) - \frac{1}{Re} \left( \mkx^2 + \mky^2 \right) \wav{\ux}{\mkx \mky}, \der{\wav{\uy}{\mkx \mky}}{t} = \wav{h_y}{\mkx \mky} - \frac{\mky}{\mkx^2 + \mky^2} \left( \mkx \wav{h_x}{\mkx \mky} + \mky \wav{h_y}{\mkx \mky} \right) - \frac{1}{Re} \left( \mkx^2 + \mky^2 \right) \wav{\uy}{\mkx \mky}. Recall that .. math:: \mkx \equiv \kx \frac{2 \pi}{\lx}, \mky \equiv \ky \frac{2 \pi}{\ly}.