Fourier-Galerkin method

Note

For simplicity I consider a two-dimensional space in this part.

Fourier series

I consider a fully-periodic domain \(\left[ 0, \lx \right) \times \left[ 0, \ly \right)\), where a scalar field \(q \in \mathbb{R}^2\) (velocity, pressure, passive scalar in the above equations) can be expanded using the Fourier series (trigonometric functions as the trial functions):

\[q \left( t, x, y \right) = \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} \wav{q}{\kx^{\prime} \ky^{\prime}} \left( t \right) \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right),\]

where \(\kx^{\prime}, \ky^{\prime} \in \mathbb{Z}\) and take \(\left[ - N / 2, - N / 2 + 1, \cdots, N / 2 - 1 \right]\), where \(N\) is the degree of freedom in the direction. Note that \(\wav{q}{\kx \ky}\) are complex numbers \(\in \mathbb{C}\). Hereafter the temporal dependency is dropped for notational simplicity.

Integrating this equation in the whole domain with the trigonometric functions as the weighting function

\[\int_{0}^{\ly} \int_{0}^{\lx} q \left( x, y \right) \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy\]

yields

\[\begin{split}& \int_{0}^{\ly} \int_{0}^{\lx} \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} \wav{q}{\kx^{\prime} \ky^{\prime}} \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right) \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy \\ & = \lx \ly \wav{q}{\kx \ky},\end{split}\]

where the orthogonality is used to reach the final relation.

Spatial derivative

For the spatial derivative of this quantity, I have

\[\begin{split}\der{q}{x} & = \der{}{x} \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} \wav{q}{\kx^{\prime} \ky^{\prime}} \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right) \\ & = \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} I \kx^{\prime} \frac{2 \pi}{\lx} \wav{q}{\kx^{\prime} \ky^{\prime}} \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right),\end{split}\]

and thus the integral

\[\int_{0}^{\ly} \int_{0}^{\lx} \der{q}{x} \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy\]

yields

\[\lx \ly I \kx \frac{2 \pi}{\lx} \wav{q}{\kx \ky}.\]

Convolution sum

Integrand:

\[p q = \sum_{\kx_0^{\prime}} \sum_{\ky_0^{\prime}} \wav{p}{\kx_0^{\prime} \ky_0^{\prime}} \exp \left( I \kx_0^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky_0^{\prime} \frac{2 \pi}{\ly} y \right) \sum_{\kx_1^{\prime}} \sum_{\ky_1^{\prime}} \wav{q}{\kx_1^{\prime} \ky_1^{\prime}} \exp \left( I \kx_1^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky_1^{\prime} \frac{2 \pi}{\ly} y \right),\]

Integral:

\[\begin{split}& \int_{0}^{\ly} \int_{0}^{\lx} pq \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy \\ = & \int_{0}^{\ly} \int_{0}^{\lx} \sum_{\kx_0^{\prime}} \sum_{\ky_0^{\prime}} \sum_{\kx_1^{\prime}} \sum_{\ky_1^{\prime}} \wav{p}{\kx_0^{\prime} \ky_0^{\prime}} \wav{q}{\kx_1^{\prime} \ky_1^{\prime}} \exp \left\{ I \left( \kx_0^{\prime} + \kx_1^{\prime} - \kx \right) \frac{2 \pi}{\lx} x \right\} \exp \left\{ I \left( \ky_0^{\prime} + \ky_1^{\prime} - \ky \right) \frac{2 \pi}{\ly} y \right\} dx dy \\ = & \lx \ly \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{p}{\kx_0^{\prime} \ky_0^{\prime}} \wav{q}{\kx_1^{\prime} \ky_1^{\prime}}.\end{split}\]