####################### Fourier-Galerkin method ####################### .. note:: For simplicity I consider a two-dimensional space in this part. ************** Fourier series ************** I consider a fully-periodic domain :math:`\left[ 0, \lx \right) \times \left[ 0, \ly \right)`, where a scalar field :math:`q \in \mathbb{R}^2` (velocity, pressure, passive scalar in the above equations) can be expanded using the Fourier series (trigonometric functions as the trial functions): .. math:: q \left( t, x, y \right) = \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} \wav{q}{\kx^{\prime} \ky^{\prime}} \left( t \right) \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right), where :math:`\kx^{\prime}, \ky^{\prime} \in \mathbb{Z}` and take :math:`\left[ - N / 2, - N / 2 + 1, \cdots, N / 2 - 1 \right]`, where :math:`N` is the degree of freedom in the direction. Note that :math:`\wav{q}{\kx \ky}` are complex numbers :math:`\in \mathbb{C}`. Hereafter the temporal dependency is dropped for notational simplicity. Integrating this equation in the whole domain with the trigonometric functions as the weighting function .. math:: \int_{0}^{\ly} \int_{0}^{\lx} q \left( x, y \right) \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy yields .. math:: & \int_{0}^{\ly} \int_{0}^{\lx} \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} \wav{q}{\kx^{\prime} \ky^{\prime}} \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right) \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy \\ & = \lx \ly \wav{q}{\kx \ky}, where the orthogonality is used to reach the final relation. ****************** Spatial derivative ****************** For the spatial derivative of this quantity, I have .. math:: \der{q}{x} & = \der{}{x} \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} \wav{q}{\kx^{\prime} \ky^{\prime}} \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right) \\ & = \sum_{\kx^{\prime}} \sum_{\ky^{\prime}} I \kx^{\prime} \frac{2 \pi}{\lx} \wav{q}{\kx^{\prime} \ky^{\prime}} \exp \left( I \kx^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky^{\prime} \frac{2 \pi}{\ly} y \right), and thus the integral .. math:: \int_{0}^{\ly} \int_{0}^{\lx} \der{q}{x} \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy yields .. math:: \lx \ly I \kx \frac{2 \pi}{\lx} \wav{q}{\kx \ky}. *************** Convolution sum *************** Integrand: .. math:: p q = \sum_{\kx_0^{\prime}} \sum_{\ky_0^{\prime}} \wav{p}{\kx_0^{\prime} \ky_0^{\prime}} \exp \left( I \kx_0^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky_0^{\prime} \frac{2 \pi}{\ly} y \right) \sum_{\kx_1^{\prime}} \sum_{\ky_1^{\prime}} \wav{q}{\kx_1^{\prime} \ky_1^{\prime}} \exp \left( I \kx_1^{\prime} \frac{2 \pi}{\lx} x \right) \exp \left( I \ky_1^{\prime} \frac{2 \pi}{\ly} y \right), Integral: .. math:: & \int_{0}^{\ly} \int_{0}^{\lx} pq \exp \left( - I \kx \frac{2 \pi}{\lx} x \right) \exp \left( - I \ky \frac{2 \pi}{\ly} y \right) dx dy \\ = & \int_{0}^{\ly} \int_{0}^{\lx} \sum_{\kx_0^{\prime}} \sum_{\ky_0^{\prime}} \sum_{\kx_1^{\prime}} \sum_{\ky_1^{\prime}} \wav{p}{\kx_0^{\prime} \ky_0^{\prime}} \wav{q}{\kx_1^{\prime} \ky_1^{\prime}} \exp \left\{ I \left( \kx_0^{\prime} + \kx_1^{\prime} - \kx \right) \frac{2 \pi}{\lx} x \right\} \exp \left\{ I \left( \ky_0^{\prime} + \ky_1^{\prime} - \ky \right) \frac{2 \pi}{\ly} y \right\} dx dy \\ = & \lx \ly \sum_{\kx_0^{\prime} + \kx_1^{\prime} = \kx} \sum_{\ky_0^{\prime} + \ky_1^{\prime} = \ky} \wav{p}{\kx_0^{\prime} \ky_0^{\prime}} \wav{q}{\kx_1^{\prime} \ky_1^{\prime}}.