Normalised basis¶
Description¶
The divergence of a second-order tensor reads
\[\left(
   \sum_k
   \frac{1}{H_k}
   \vec{\hat{E}}_k
   \pder{}{X^k}
\right)
\cdot
\left\{
   \sum_{ij}
   \left(
      \vec{\hat{E}}_j
      \otimes
      \vec{\hat{E}}_i
   \right)
   \hat{S}^{ij}
\right\},\]
which has the following three components.
The first one is
\[\sum_{ijk}
\left(
   \vec{\hat{E}}_k
   \cdot
   \pder{\vec{\hat{E}}_j}{X^k}
\right)
\frac{1}{H_k}
\vec{\hat{E}}_i
\hat{S}^{ij}.\]
By using the relation:
\[\dehatdx{j}{k}{l},\]
this leads to
\[\begin{split}&
\sum_{ijk}
\left(
   \vec{\hat{E}}_k
   \cdot
   \frac{1}{H_j}
   \pder{H_k}{X^j}
   \vec{\hat{E}}_k
   -
   \vec{\hat{E}}_k
   \cdot
   \sum_l
   \delta_{jk}
   \frac{1}{H_l}
   \pder{H_j}{X^l}
   \vec{\hat{E}}_l
\right)
\frac{1}{H_k}
\vec{\hat{E}}_i
\hat{S}^{ij} \\
=
&
\sum_{ijk}
\vec{\hat{E}}_i
\frac{1}{H_j}
\frac{1}{H_k}
\pder{H_k}{X^j}
\hat{S}^{ij}
-
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_j}
\frac{1}{H_j}
\pder{H_j}{X^j}
\hat{S}^{ij} \\
=
&
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_j}
\frac{1}{J}
\pder{J}{X^j}
\hat{S}^{ij}
-
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_j}
\frac{1}{H_j}
\pder{H_j}{X^j}
\hat{S}^{ij},\end{split}\]
where the relation:
\[\sumofchristoffel\]
is adopted.
The second one is
\[\begin{split}&
\sum_{ijk}
\left(
   \vec{\hat{E}}_k
   \cdot
   \vec{\hat{E}}_j
   =
   \delta_{kj}
\right)
\frac{1}{H_k}
\pder{\vec{\hat{E}}_i}{X^k}
\hat{S}^{ij} \\
=
&
\sum_{ij}
\frac{1}{H_j}
\pder{\vec{\hat{E}}_i}{X^j}
\hat{S}^{ij}.\end{split}\]
By using the relation:
\[\dehatdx{i}{j}{k},\]
this leads to
\[\begin{split}&
\sum_{ij}
\frac{1}{H_j}
\frac{1}{H_i}
\pder{H_j}{X^i}
\vec{\hat{E}}_j
\hat{S}^{ij}
-
\sum_{ijk}
\frac{1}{H_j}
\delta_{ij}
\frac{1}{H_k}
\pder{H_i}{X^k}
\vec{\hat{E}}_k
\hat{S}^{ij} \\
=
&
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_i}
\frac{1}{H_j}
\pder{H_i}{X^j}
\hat{S}^{ji}
-
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_i}
\frac{1}{H_j}
\pder{H_j}{X^i}
\hat{S}^{jj}.\end{split}\]
The third one is
\[\begin{split}&
\sum_{ijk}
\left(
   \vec{\hat{E}}_k
   \cdot
   \vec{\hat{E}}_j
   =
   \delta_{kj}
\right)
\frac{1}{H_k}
\vec{\hat{E}}_i
\pder{\hat{S}^{ij}}{X^k} \\
=
&
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_j}
\pder{\hat{S}^{ij}}{X^j}.\end{split}\]
The sum of the whole elements yields
\[\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_j}
\frac{1}{J}
\pder{
   J
   \hat{S}^{ij}
}{
   X^j
}
-
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_j}
\frac{1}{H_j}
\pder{H_j}{X^j}
\hat{S}^{ij}
+
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_i}
\frac{1}{H_j}
\pder{H_i}{X^j}
\hat{S}^{ji}
-
\sum_{ij}
\vec{\hat{E}}_i
\frac{1}{H_i}
\frac{1}{H_j}
\pder{H_j}{X^i}
\hat{S}^{jj},\]
where the part of the first element and the last element were unified to yield the Jacobian relation.
Furthermore, the first two terms can be unified to yield
\[\newcommand{\tmpa}[2]{
   \frac{1}{J}
   \pder{}{X^#2}
   \left(
      \frac{J}{H_#2}
      \hat{S}^{#1 #2}
   \right)
}
\newcommand{\tmpb}[2]{
   \frac{1}{H_#1}
   \frac{1}{H_#2}
   \pder{H_#1}{X^#2}
   \hat{S}^{#2 #1}
}
\newcommand{\tmpc}[2]{
   \frac{1}{H_#1}
   \frac{1}{H_#2}
   \pder{H_#2}{X^#1}
   \hat{S}^{#2 #2}
}
\sum_{ij}
\vec{\hat{E}}_i
\tmpa{i}{j}
+
\sum_{ij}
\vec{\hat{E}}_i
\tmpb{i}{j}
-
\sum_{ij}
\vec{\hat{E}}_i
\tmpc{i}{j}.\]
Explicitly, the sum of
\[\begin{split}\begin{pmatrix}
   \vec{\hat{E}}_1
   &
   \vec{\hat{E}}_2
   &
   \vec{\hat{E}}_3
\end{pmatrix}
\begin{pmatrix}
   \tmpa{1}{1}
   +
   \tmpa{1}{2}
   +
   \tmpa{1}{3}
   \\
   \tmpa{2}{1}
   +
   \tmpa{2}{2}
   +
   \tmpa{2}{3}
   \\
   \tmpa{3}{1}
   +
   \tmpa{3}{2}
   +
   \tmpa{3}{3}
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
   \vec{\hat{E}}_1
   &
   \vec{\hat{E}}_2
   &
   \vec{\hat{E}}_3
\end{pmatrix}
\begin{pmatrix}
   \tmpb{1}{1}
   +
   \tmpb{1}{2}
   +
   \tmpb{1}{3}
   \\
   \tmpb{2}{1}
   +
   \tmpb{2}{2}
   +
   \tmpb{2}{3}
   \\
   \tmpb{3}{1}
   +
   \tmpb{3}{2}
   +
   \tmpb{3}{3}
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
   \vec{\hat{E}}_1
   &
   \vec{\hat{E}}_2
   &
   \vec{\hat{E}}_3
\end{pmatrix}
\begin{pmatrix}
   -
   \tmpc{1}{1}
   -
   \tmpc{1}{2}
   -
   \tmpc{1}{3}
   \\
   -
   \tmpc{2}{1}
   -
   \tmpc{2}{2}
   -
   \tmpc{2}{3}
   \\
   -
   \tmpc{3}{1}
   -
   \tmpc{3}{2}
   -
   \tmpc{3}{3}
\end{pmatrix}.\end{split}\]
Example¶
The sum of
\[\vec{\hat{E}}_1
\left(
   \frac{1}{X^1}
   \pder{X^1 \hat{S}^{1 1}}{X^1}
   +
   \frac{1}{X^1}
   \pder{\hat{S}^{1 2}}{X^2}
   +
   \pder{\hat{S}^{1 3}}{X^3}
   -
   \frac{
      \hat{S}^{2 2}
   }{
      X^1
   }
\right),\]
\[\vec{\hat{E}}_2
\left(
   \frac{1}{X^1}
   \pder{X^1 \hat{S}^{2 1}}{X^1}
   +
   \frac{1}{X^1}
   \pder{\hat{S}^{2 2}}{X^2}
   +
   \pder{\hat{S}^{2 3}}{X^3}
   +
   \frac{
      \hat{S}^{1 2}
   }{
      X^1
   }
\right),\]
\[\vec{\hat{E}}_3
\left(
   \frac{1}{X^1}
   \pder{X^1 \hat{S}^{3 1}}{X^1}
   +
   \frac{1}{X^1}
   \pder{\hat{S}^{3 2}}{X^2}
   +
   \pder{\hat{S}^{3 3}}{X^3}
\right).\]