Covariant basis¶
Description¶
The divergence of a second-order tensor reads
\[\left(
   \sum_k
   \vec{E}^k
   \pder{}{X^k}
\right)
\cdot
\left\{
   \sum_{ij}
   \left(
      \vec{E}_j
      \otimes
      \vec{E}_i
   \right)
   S^{ij}
\right\},\]
which has three components:
\[\begin{split}\sum_{ijk}
\left(
   \vec{E}^k
   \cdot
   \pder{\vec{E}_j}{X^k}
\right)
\vec{E}_i
S^{ij}
=
&
\sum_{ijkl}
\left(
   \vec{E}^k
   \cdot
   \vec{E}_l
   =
   \delta_l^k
\right)
\vec{E}_i
\Gamma_{jk}^l
S^{ij} \\
=
&
\sum_{ijk}
\vec{E}_i
\Gamma_{jk}^k
S^{ij} \\
=
&
\sum_{ij}
\vec{E}_i
\frac{1}{J}
\pder{J}{X^j}
S^{ij},\end{split}\]
\[\begin{split}\sum_{ijk}
\left(
   \vec{E}^k
   \cdot
   \vec{E}_j
   =
   \delta_j^k
\right)
\pder{\vec{E}_i}{X^k}
S^{ij}
=
&
\sum_{ij}
\pder{\vec{E}_i}{X^j}
S^{ij} \\
=
&
\sum_{ij}
\left(
   \frac{1}{H_i}
   \pder{H_i}{X^j}
   \vec{E}_i
   +
   \frac{1}{H_j}
   \pder{H_j}{X^i}
   \vec{E}_j
   -
   \sum_k
   \delta_{ij}
   \frac{H_j}{2 H_k H_k}
   \pder{H_i}{X^k}
   \vec{E}_k
   -
   \sum_k
   \delta_{ij}
   \frac{H_i}{2 H_k H_k}
   \pder{H_j}{X^k}
   \vec{E}_k
\right)
S^{ij} \\
=
&
\newcommand{\tmpa}[2]{
   \frac{1}{H_{#1}}
   \pder{H_{#1}}{X^{#2}}
   \left(
      S^{#1 #2}
      +
      S^{#2 #1}
   \right)
}
\newcommand{\tmpb}[2]{
   \frac{H_{#2}}{H_{#1} H_{#1}}
   \pder{H_{#2}}{X^{#1}}
   S^{#2 #2}
}
\sum_{ij}
\vec{E}_i
\tmpa{i}{j}
-
\sum_{ij}
\vec{E}_i
\tmpb{i}{j},\end{split}\]
\[\sum_{ijk}
\left(
   \vec{E}^k
   \cdot
   \vec{E}_j
   =
   \delta_j^k
\right)
\vec{E}_i
\pder{S^{ij}}{X^k}
=
\sum_{ij}
\vec{E}_i
\pder{S^{ij}}{X^j}.\]
The sum of the first and the last elements yields
\[\newcommand{\tmpc}[2]{
   \frac{1}{J}
   \pder{}{X^{#2}}
   \left(
      J
      S^{#1 #2}
   \right)
}
\sum_{ij}
\vec{E}_i
\tmpc{i}{j}.\]
Explicitly, the sum of
\[\begin{split}\begin{pmatrix}
   \vec{E}_1
   &
   \vec{E}_2
   &
   \vec{E}_3
\end{pmatrix}
\begin{pmatrix}
   \tmpc{1}{1}
   +
   \tmpc{1}{2}
   +
   \tmpc{1}{3}
   \\
   \tmpc{2}{1}
   +
   \tmpc{2}{2}
   +
   \tmpc{2}{3}
   \\
   \tmpc{3}{1}
   +
   \tmpc{3}{2}
   +
   \tmpc{3}{3}
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
   \vec{E}_1
   &
   \vec{E}_2
   &
   \vec{E}_3
\end{pmatrix}
\begin{pmatrix}
   \tmpa{1}{1}
   +
   \tmpa{1}{2}
   +
   \tmpa{1}{3}
   \\
   \tmpa{2}{1}
   +
   \tmpa{2}{2}
   +
   \tmpa{2}{3}
   \\
   \tmpa{3}{1}
   +
   \tmpa{3}{2}
   +
   \tmpa{3}{3}
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
   \vec{E}_1
   &
   \vec{E}_2
   &
   \vec{E}_3
\end{pmatrix}
\begin{pmatrix}
   -
   \tmpb{1}{1}
   -
   \tmpb{1}{2}
   -
   \tmpb{1}{3}
   \\
   -
   \tmpb{2}{1}
   -
   \tmpb{2}{2}
   -
   \tmpb{2}{3}
   \\
   -
   \tmpb{3}{1}
   -
   \tmpb{3}{2}
   -
   \tmpb{3}{3}
\end{pmatrix}.\end{split}\]
Example¶
Cylindrical coordinates¶
The sum of
\[\vec{E}_1
\left(
   \frac{1}{X^1}
   \pder{X^1 S^{1 1}}{X^1}
   +
   \pder{S^{1 2}}{X^2}
   +
   \pder{S^{1 3}}{X^3}
   -
   X^1
   S^{2 2}
\right),\]
\[\vec{E}_2
\left(
   \frac{1}{X^1}
   \pder{X^1 S^{2 1}}{X^1}
   +
   \pder{S^{2 2}}{X^2}
   +
   \pder{S^{2 3}}{X^3}
   +
   \frac{
      S^{2 1}
      +
      S^{1 2}
   }{
      X^1
   }
\right),\]
\[\vec{E}_3
\left(
   \frac{1}{X^1}
   \pder{X^1 S^{3 1}}{X^1}
   +
   \pder{S^{3 2}}{X^2}
   +
   \pder{S^{3 3}}{X^3}
\right).\]
Rectilinear coordinates¶
The sum of
\[\vec{E}_1
\left(
   \frac{1}{J}
   \pder{}{X^1}
   \left(
      J
      S^{11}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^2}
   \left(
      J
      S^{12}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^3}
   \left(
      J
      S^{13}
   \right)
   +
   \frac{1}{H_1}
   \pder{H_1}{X^1}
   S^{11}
\right),\]
\[\vec{E}_2
\left(
   \frac{1}{J}
   \pder{}{X^1}
   \left(
      J
      S^{21}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^2}
   \left(
      J
      S^{22}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^3}
   \left(
      J
      S^{23}
   \right)
   +
   \frac{1}{H_2}
   \pder{H_2}{X^2}
   S^{22}
\right),\]
\[\vec{E}_3
\left(
   \frac{1}{J}
   \pder{}{X^1}
   \left(
      J
      S^{31}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^2}
   \left(
      J
      S^{32}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^3}
   \left(
      J
      S^{33}
   \right)
   +
   \frac{1}{H_3}
   \pder{H_3}{X^3}
   S^{33}
\right).\]
Application¶
The sum of
\[\vec{E}_1
\left(
   \frac{1}{J}
   \pder{}{X^1}
   \left(
      J
      S^{11}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^2}
   \left(
      J
      S^{12}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^3}
   \left(
      J
      S^{13}
   \right)
   +
   \frac{1}{H_1}
   \pder{H_1}{X^1}
   S^{11}
   -
   \frac{H_2}{H_1 H_1}
   \pder{H_2}{X^1}
   S^{22}
\right),\]
\[\vec{E}_2
\left(
   \frac{1}{J}
   \pder{}{X^1}
   \left(
      J
      S^{21}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^2}
   \left(
      J
      S^{22}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^3}
   \left(
      J
      S^{23}
   \right)
   +
   \frac{1}{H_2}
   \pder{H_2}{X^1}
   S^{21}
   +
   \frac{1}{H_2}
   \pder{H_2}{X^1}
   S^{12}
\right),\]
\[\vec{E}_3
\left(
   \frac{1}{J}
   \pder{}{X^1}
   \left(
      J
      S^{31}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^2}
   \left(
      J
      S^{32}
   \right)
   +
   \frac{1}{J}
   \pder{}{X^3}
   \left(
      J
      S^{33}
   \right)
\right).\]