Christoffel symbol¶
Description¶
Definition¶
I consider the Christoffel symbol of the second kind
\[\christoffel,\]
which will appear when I consider the change of basis vectors. Here I assume \(x^l\) is twice-differentiable to find \(\Gamma_{ij}^k = \Gamma_{ji}^k\).
Relation with scale factor¶
By using the relation for the transformation matrices:
\[\jacobiconv,\]
I have
\[\Gamma_{ij}^k
=
\frac{1}{H_k H_k}
\sum_l
\pder{}{X^i}
\left(
   \pder{x^l}{X^j}
\right)
\pder{x^l}{X^k}.\]
Here I recall the orthogonality:
\[\orthogonal\]
to find
\[\metrictensor,\]
because
\[\begin{split}\vec{E}_i
\cdot
\vec{E}_j
&
=
\left(
   \sum_k
   \pder{x^k}{X^i}
   \vec{e}_k
\right)
\cdot
\left(
   \sum_l
   \pder{x^l}{X^j}
   \vec{e}_l
\right) \\
&
=
\sum_{kl}
\pder{x^k}{X^i}
\pder{x^l}{X^j}
\vec{e}_k
\cdot
\vec{e}_l \\
&
=
\sum_{kl}
\pder{x^k}{X^i}
\pder{x^l}{X^j}
\delta_{kl} \\
&
=
\sum_k
\pder{x^k}{X^i}
\pder{x^k}{X^j}.\end{split}\]
Furthermore, I consider its derivative with respect to \(X^l\):
\[\begin{split}\pder{}{X^l}
\left(
   H_i
   H_j
   \delta_{ij}
\right)
&
=
\pder{}{X^l}
\left(
   \sum_k
   \pder{x^k}{X^i}
   \pder{x^k}{X^j}
\right) \\
&
=
\sum_k
\pder{}{X^l}
\left(
   \pder{x^k}{X^i}
\right)
\pder{x^k}{X^j}
+
\sum_k
\pder{}{X^l}
\left(
   \pder{x^k}{X^j}
\right)
\pder{x^k}{X^i} \\
&
=
H_j H_j \Gamma_{il}^j
+
H_i H_i \Gamma_{jl}^i,\end{split}\]
which is equivalent to
\[ \begin{align}\begin{aligned}\newcommand{\csymb}[3]{
   H_{#1} H_{#1} \Gamma_{#2#3}^{#1}
   =
   \pder{}{X^#3}
   \left(
      H_{#1}
      H_{#2}
      \delta_{#1#2}
   \right)
   -
   H_{#2} H_{#2} \Gamma_{#1#3}^{#2}
}
\csymb{i}{j}{l},\\\csymb{j}{l}{i},\\\csymb{l}{i}{j}.\end{aligned}\end{align} \]
Finally I obtain an explicit relation of the Christoffel symbol of the second kind and the scale factors (the indices are interchanged for later convenience):
\[\fromchristoffeltoscalefactor.\]
Useful relations¶
Assuming \(k = j\) yields
\[\Gamma_{ij}^j
=
\frac{1}{H_j}
\pder{H_j}{X^i}.\]
Now I consider
\[\sum_j
\Gamma_{ij}^j
\mathcal{Q},\]
where \(\mathcal{Q}\) is an arbitrary order of tensor.
This relation is
\[\sum_j
\frac{1}{H_j}
\pder{H_j}{X^i}
\mathcal{Q}
=
\sum_j
\frac{1}{J}
\frac{J}{H_j}
\pder{H_j}{X^i}
\mathcal{Q}.\]
In summary, I have
\[\sumofchristoffel.\]