Relations involving wall-normal velocity

Differentiations

\[\sumzc \sumyc \sumxf \vel{1} \dif{q}{\gcs{1}} = - \sumzc \sumyc \sumxc \dif{\vel{1}}{\gcs{1}} q,\]

where \(\vat{\vel{1}}{\frac{1}{2}} = \vat{\vel{1}}{\ngp{1} + \frac{1}{2}} = 0\) is used.

\[\sumzc \sumyc \sumxf \vel{1} \dif{q}{\gcs{2}} = - \sumzc \sumyf \sumxf \dif{\vel{1}}{\gcs{2}} q.\]
\[\sumzc \sumyc \sumxf \vel{1} \dif{q}{\gcs{3}} = - \sumzf \sumyc \sumxf \dif{\vel{1}}{\gcs{3}} q.\]

Averages

\[\sumzc \sumyc \sumxf \vel{1} \ave{q}{\gcs{1}} = \sumzc \sumyc \sumxc \ave{\vel{1}}{\gcs{1}} q.\]
\[\sumzc \sumyc \sumxf \vel{1} \ave{q}{\gcs{2}} = \sumzc \sumyf \sumxf \ave{\vel{1}}{\gcs{2}} q.\]
\[\sumzc \sumyc \sumxf \vel{1} \ave{q}{\gcs{3}} = \sumzf \sumyc \sumxf \ave{\vel{1}}{\gcs{3}} q.\]