Diffusive terms

We utilise the relations listed in the prerequisite to derive the following relations.

Squared velocity

From the wall-normal momentum balance, we obtain

\[- \sumzc \sumyc \sumxc \dkdis{1}{1} - \sumzc \sumyf \sumxf \dkdis{2}{1} - \sumzf \sumyc \sumxf \dkdis{3}{1}.\]

From the stream-wise momentum balance, we obtain

\[- \sumzc \sumyf \sumxf \dkdis{1}{2} - \sumzc \sumyc \sumxc \dkdis{2}{2} - \sumzf \sumyf \sumxc \dkdis{3}{2}.\]

From the span-wise momentum balance, we obtain

\[- \sumzf \sumyc \sumxf \dkdis{1}{3} - \sumzf \sumyf \sumxc \dkdis{2}{3} - \sumzc \sumyc \sumxc \dkdis{3}{3}.\]

In total, all terms work to dissipate \(k\).

Squared temperature

We obtain

\[- \sumzc \sumyc \sumxf J \frac{1}{\sqrt{Pr} \sqrt{Ra}} \left( \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right)^2 - \sumzc \sumyf \sumxc J \frac{1}{\sqrt{Pr} \sqrt{Ra}} \left( \frac{1}{\sfact{2}} \dif{T}{\gcs{2}} \right)^2 - \sumzf \sumyc \sumxc J \frac{1}{\sqrt{Pr} \sqrt{Ra}} \left( \frac{1}{\sfact{3}} \dif{T}{\gcs{3}} \right)^2\]

as the dissipative terms, while

\[- \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \left( \frac{J}{\sfact{1}} T \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right) }{\frac{1}{2}} + \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \left( \frac{J}{\sfact{1}} T \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right) }{\ngp{1} + \frac{1}{2}}\]

as the conduction on the walls.