Pressure-gradient termsΒΆ

The pressure-gradient terms:

\[- \frac{1}{\sfact{i}} \dif{p}{\gcs{i}}\]

contribute to the energy balance as follows:

\[ \begin{align}\begin{aligned}\newcommand{\tmp}[1]{ J \vel{#1} \frac{1}{\sfact{#1}} \dif{p}{\gcs{#1}} = \sumzc \sumyc \sumxc J p \frac{1}{J} \dif{ \left( \frac{J}{\sfact{#1}} \vel{#1} \right) }{\gcs{#1}} } - \sumzc \sumyc \sumxf \tmp{1},\\- \sumzc \sumyf \sumxc \tmp{2},\\- \sumzf \sumyc \sumxc \tmp{3}.\end{aligned}\end{align} \]

The sum of these three relations is

\[\sumzc \sumyc \sumxc J p \left\{ \ddiv{1} + \ddiv{2} + \ddiv{3} \right\},\]

which is zero because the component inside the wavy parentheses is the incompressibility constraint.