Rectilinear coordinatesΒΆ
Note
Normalised representations will not be discussed since they coincide with the Cartesian one.
The rectilinear coordinates are defined as
\[ \begin{align}\begin{aligned}& X^1 \equiv f_1 \left( x^1 \right),\\& X^2 \equiv f_2 \left( x^2 \right),\\& X^3 \equiv f_3 \left( x^3 \right).\end{aligned}\end{align} \]
\(f_i\) are not explicitly discussed here, which are to be determined when the computational grid is designed. Without loss of generality, I assume that the mapping functions \(f_i\) monotonically increase.
The transformation matrix is
\[\begin{split}\begin{pmatrix}
\pder{x^1}{X^1} & \pder{x^1}{X^2} & \pder{x^1}{X^3} \\
\pder{x^2}{X^1} & \pder{x^2}{X^2} & \pder{x^2}{X^3} \\
\pder{x^3}{X^1} & \pder{x^3}{X^2} & \pder{x^3}{X^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\pder{x^1}{X^1} & 0 & 0 \\
0 & \pder{x^2}{X^2} & 0 \\
0 & 0 & \pder{x^3}{X^3} \\
\end{pmatrix}
=
\begin{pmatrix}
H_1 & 0 & 0 \\
0 & H_2 & 0 \\
0 & 0 & H_3 \\
\end{pmatrix},\end{split}\]
or
\[\begin{split}\begin{pmatrix}
\pder{X^1}{x^1} & \pder{X^1}{x^2} & \pder{X^1}{x^3} \\
\pder{X^2}{x^1} & \pder{X^2}{x^2} & \pder{X^2}{x^3} \\
\pder{X^3}{x^1} & \pder{X^3}{x^2} & \pder{X^3}{x^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\pder{X^1}{x^1} & 0 & 0 \\
0 & \pder{X^2}{x^2} & 0 \\
0 & 0 & \pder{X^3}{x^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{H_1} & 0 & 0 \\
0 & \frac{1}{H_2} & 0 \\
0 & 0 & \frac{1}{H_3} \\
\end{pmatrix}.\end{split}\]
As a consequence, the basis vectors are related by
\[ \begin{align}\begin{aligned}&
\vec{E}_1
=
\pder{x^1}{X^1}
\vec{e}_1
=
H_1
\vec{e}_1,\\&
\vec{E}_2
=
\pder{x^2}{X^2}
\vec{e}_2
=
H_2
\vec{e}_2,\\&
\vec{E}_3
=
\pder{x^3}{X^3}
\vec{e}_3
=
H_3
\vec{e}_3,\end{aligned}\end{align} \]
or
\[ \begin{align}\begin{aligned}&
\vec{e}_1
=
\pder{X^1}{x^1}
\vec{E}_1
=
\frac{1}{H_1}
\vec{E}_1,\\&
\vec{e}_2
=
\pder{X^2}{x^2}
\vec{E}_2
=
\frac{1}{H_2}
\vec{E}_2,\\&
\vec{e}_3
=
\pder{X^3}{x^3}
\vec{E}_3
=
\frac{1}{H_3}
\vec{E}_3.\end{aligned}\end{align} \]
Although already introduced, the scale factors are
\[H_i
=
\sqrt{
\vec{E}_i
\cdot
\vec{E}_i
}
=
\pder{x^i}{X^i},\]
and their spatial derivatives are
\[\begin{split}\begin{pmatrix}
\pder{H_1}{X^1} & \pder{H_2}{X^1} & \pder{H_3}{X^1} \\
\pder{H_1}{X^2} & \pder{H_2}{X^2} & \pder{H_3}{X^2} \\
\pder{H_1}{X^3} & \pder{H_2}{X^3} & \pder{H_3}{X^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\pder{H_1}{X^1} & 0 & 0 \\
0 & \pder{H_2}{X^2} & 0 \\
0 & 0 & \pder{H_3}{X^3} \\
\end{pmatrix}.\end{split}\]
The Jacobian determinant is
\[J
=
H_1
H_2
H_3
=
\pder{x^1}{X^1}
\pder{x^2}{X^2}
\pder{x^3}{X^3}.\]
Although not limited, I consider the velocity vector
\[\vec{u}
\equiv
\tder{\vec{x}}{t}
=
\sum_i
u^i
\vec{e}_i\]
as an example to see how the components are related. Then the contravariant components are
\[ \begin{align}\begin{aligned}&
U^1
=
\pder{X^1}{x^1}
u^1
=
\frac{u^1}{H_1},\\&
U^2
=
\pder{X^2}{x^2}
u^2
=
\frac{u^2}{H_2},\\&
U^3
=
\pder{X^3}{x^3}
u^3
=
\frac{u^3}{H_3}.\end{aligned}\end{align} \]