Cylindrical coordinatesΒΆ
The cylindrical coordinates are defined as
\[ \begin{align}\begin{aligned}& X^1 \equiv \sqrt{x^1 x^1 + x^2 x^2},\\& X^2 \equiv \tan^{-1} \left( \frac{x^2}{x^1} \right),\\& X^3 \equiv x^3,\end{aligned}\end{align} \]
or equivalently
\[ \begin{align}\begin{aligned}& x^1 = X^1 \cos X^2,\\& x^2 = X^1 \sin X^2,\\& x^3 = X^3.\end{aligned}\end{align} \]
The transformation matrix is
\[\begin{split}\begin{pmatrix}
\pder{x^1}{X^1} & \pder{x^1}{X^2} & \pder{x^1}{X^3} \\
\pder{x^2}{X^1} & \pder{x^2}{X^2} & \pder{x^2}{X^3} \\
\pder{x^3}{X^1} & \pder{x^3}{X^2} & \pder{x^3}{X^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\cos X^2 & - X^1 \sin X^2 & 0 \\
\sin X^2 & X^1 \cos X^2 & 0 \\
0 & 0 & 1 \\
\end{pmatrix},\end{split}\]
or
\[\begin{split}\begin{pmatrix}
\pder{X^1}{x^1} & \pder{X^1}{x^2} & \pder{X^1}{x^3} \\
\pder{X^2}{x^1} & \pder{X^2}{x^2} & \pder{X^2}{x^3} \\
\pder{X^3}{x^1} & \pder{X^3}{x^2} & \pder{X^3}{x^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\cos X^2
&
\sin X^2
&
0
\\
- \frac{\sin X^2}{X^1}
&
\frac{\cos X^2}{X^1}
&
0
\\
0
&
0
&
1
\\
\end{pmatrix}.\end{split}\]
As a consequence, the basis vectors are related by
\[ \begin{align}\begin{aligned}&
\vec{E}_1
=
\vec{e}_1
\cos X^2
+
\vec{e}_2
\sin X^2,\\&
\vec{E}_2
=
-
\vec{e}_1
X^1
\sin X^2
+
\vec{e}_2
X^1
\cos X^2,\\&
\vec{E}_3
=
\vec{e}_3,\end{aligned}\end{align} \]
or
\[ \begin{align}\begin{aligned}&
\vec{e}_1
=
\vec{E}_1
\cos X^2
-
\vec{E}_2
\frac{\sin X^2}{X^1},\\&
\vec{e}_2
=
\vec{E}_1
\sin X^2
+
\vec{E}_2
\frac{\cos X^2}{X^1},\\&
\vec{e}_3
=
\vec{E}_3.\end{aligned}\end{align} \]
The scale factors are
\[ \begin{align}\begin{aligned}&
H_1
=
\sqrt{
\vec{E}_1
\cdot
\vec{E}_1
}
=
1,\\&
H_2
=
\sqrt{
\vec{E}_2
\cdot
\vec{E}_2
}
=
X^1,\\&
H_3
=
\sqrt{
\vec{E}_3
\cdot
\vec{E}_3
}
=
1,\end{aligned}\end{align} \]
and their spatial derivatives are
\[\begin{split}\begin{pmatrix}
\pder{H_1}{X^1} & \pder{H_2}{X^1} & \pder{H_3}{X^1} \\
\pder{H_1}{X^2} & \pder{H_2}{X^2} & \pder{H_3}{X^2} \\
\pder{H_1}{X^3} & \pder{H_2}{X^3} & \pder{H_3}{X^3} \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}.\end{split}\]
The Jacobian determinant is
\[J
=
H_1
H_2
H_3
=
X^1.\]
Thus the normalised basis vectors are
\[ \begin{align}\begin{aligned}&
\vec{\hat{E}}_1
=
\vec{e}_1
\cos X^2
+
\vec{e}_2
\sin X^2,\\&
\vec{\hat{E}}_2
=
-
\vec{e}_1
\sin X^2
+
\vec{e}_2
\cos X^2,\\&
\vec{\hat{E}}_3
=
\vec{e}_3,\end{aligned}\end{align} \]
or inversely
\[ \begin{align}\begin{aligned}&
\vec{e}_1
=
\vec{\hat{E}}_1
\cos X^2
-
\vec{\hat{E}}_2
\sin X^2,\\&
\vec{e}_2
=
\vec{\hat{E}}_1
\sin X^2
+
\vec{\hat{E}}_2
\cos X^2,\\&
\vec{e}_3
=
\vec{\hat{E}}_3.\end{aligned}\end{align} \]
Although not limited, I consider the velocity vector
\[\vec{u}
\equiv
\tder{\vec{x}}{t}
=
\sum_i
u^i
\vec{e}_i\]
as an example to see how the components are related. Then the contravariant components are
\[ \begin{align}\begin{aligned}&
U^1
=
u^1
\cos X^2
+
u^2
\sin X^2,\\&
U^2
=
-
u^1
\frac{\sin X^2}{X^1}
+
u^2
\frac{\cos X^2}{X^1},\\&
U^3
=
u^3,\end{aligned}\end{align} \]
while the normalised components are
\[ \begin{align}\begin{aligned}&
\hat{U}^1
=
u^1
\cos X^2
+
u^2
\sin X^2,\\&
\hat{U}^2
=
-
u^1
\sin X^2
+
u^2
\cos X^2,\\&
\hat{U}^3
=
u^3.\end{aligned}\end{align} \]