Application
I consider the cylindrical coordinates
\[ \begin{align}\begin{aligned}& \xi^1 \equiv \sqrt{x^1 x^1 + x^2 x^2},\\& \xi^2 \equiv \tan^{-1} \left( \frac{x^2}{x^1} \right),\\& \xi^3 \equiv x^3,\end{aligned}\end{align} \]
which are further stretched in a rectilinear way:
\[ \begin{align}\begin{aligned}& X^1 \equiv f_1 \left( \xi^1 \right),\\& X^2 \equiv f_2 \left( \xi^2 \right),\\& X^3 \equiv f_3 \left( \xi^3 \right).\end{aligned}\end{align} \]
Note that \(f_1\) is an arbitrary function and can be non-linear, while the other two functions \(f_2, f_3\) are linear.
Adopting the chain rule:
\[\pder{x^i}{X^j}
=
\sum_k
\pder{x^i}{\xi^k}
\pder{\xi^k}{X^j}\]
yields the transformation matrix:
\[\begin{split}\begin{pmatrix}
\pder{x^1}{X^1} & \pder{x^1}{X^2} & \pder{x^1}{X^3} \\
\pder{x^2}{X^1} & \pder{x^2}{X^2} & \pder{x^2}{X^3} \\
\pder{x^3}{X^1} & \pder{x^3}{X^2} & \pder{x^3}{X^3} \\
\end{pmatrix}
&
=
\begin{pmatrix}
\pder{x^1}{\xi^1} & \pder{x^1}{\xi^2} & \pder{x^1}{\xi^3} \\
\pder{x^2}{\xi^1} & \pder{x^2}{\xi^2} & \pder{x^2}{\xi^3} \\
\pder{x^3}{\xi^1} & \pder{x^3}{\xi^2} & \pder{x^3}{\xi^3} \\
\end{pmatrix}
\begin{pmatrix}
\pder{\xi^1}{X^1} & \pder{\xi^1}{X^2} & \pder{\xi^1}{X^3} \\
\pder{\xi^2}{X^1} & \pder{\xi^2}{X^2} & \pder{\xi^2}{X^3} \\
\pder{\xi^3}{X^1} & \pder{\xi^3}{X^2} & \pder{\xi^3}{X^3} \\
\end{pmatrix}
\\
&
=
\begin{pmatrix}
\cos \xi^2 & - \xi^1 \sin \xi^2 & 0 \\
\sin \xi^2 & \xi^1 \cos \xi^2 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
\pder{\xi^1}{X^1} & 0 & 0 \\
0 & \pder{\xi^2}{X^2} & 0 \\
0 & 0 & \pder{\xi^3}{X^3} \\
\end{pmatrix}
\\
&
=
\begin{pmatrix}
\pder{\xi^1}{X^1} \cos \xi^2 & - \pder{\xi^2}{X^2} \xi^1 \sin \xi^2 & 0 \\
\pder{\xi^1}{X^1} \sin \xi^2 & \pder{\xi^2}{X^2} \xi^1 \cos \xi^2 & 0 \\
0 & 0 & \pder{\xi^3}{X^3} \\
\end{pmatrix}.\end{split}\]
Note that, because of the linearity of \(f_2\) and \(f_3\), \(\pder{\xi^2}{X^2}\) and \(\pder{\xi^3}{X^3}\) (specifically \(\Delta \theta\) and \(\Delta z\), respectively) are both constant in space.
\(\pder{\xi^1}{X^1}\) (\(\Delta r\)), on the other hand, can vary in \(X^1\).
The relation of the basis vectors are
\[ \begin{align}\begin{aligned}&
\vec{E}_1
=
\vec{e}_1
\pder{\xi^1}{X^1} \cos \xi^2
+
\vec{e}_2
\pder{\xi^1}{X^1} \sin \xi^2,\\&
\vec{E}_2
=
-
\vec{e}_1
\pder{\xi^2}{X^2} \xi^1 \sin \xi^2
+
\vec{e}_2
\pder{\xi^2}{X^2} \xi^1 \cos \xi^2,\\&
\vec{E}_3
=
\vec{e}_3
\pder{\xi^3}{X^3}.\end{aligned}\end{align} \]
The scale factors are
\[ \begin{align}\begin{aligned}&
H_1
=
\sqrt{
\vec{E}_1
\cdot
\vec{E}_1
}
=
\pder{\xi^1}{X^1}
\left(
=
\Delta r
\right),\\&
H_2
=
\sqrt{
\vec{E}_2
\cdot
\vec{E}_2
}
=
\pder{\xi^2}{X^2}
\xi^1
\left(
=
r \Delta \theta
\right),\\&
H_3
=
\sqrt{
\vec{E}_3
\cdot
\vec{E}_3
}
=
\pder{\xi^3}{X^3}
\left(
=
\Delta z
\right),\end{aligned}\end{align} \]
and thus the Jacobian determinant leads to
\[J
=
\xi^1
\pder{\xi^1}{X^1}
\pder{\xi^2}{X^2}
\pder{\xi^3}{X^3}
\left(
=
r
\Delta r
\Delta \theta
\Delta z
\right).\]
The spatial derivatives of \(H_i\) are
\[\begin{split}\begin{pmatrix}
\pder{H_1}{X^1} & \pder{H_2}{X^1} & \pder{H_3}{X^1} \\
\pder{H_1}{X^2} & \pder{H_2}{X^2} & \pder{H_3}{X^2} \\
\pder{H_1}{X^3} & \pder{H_2}{X^3} & \pder{H_3}{X^3} \\
\end{pmatrix}
=
\begin{pmatrix}
\pder{H_1}{X^1} & \pder{H_2}{X^1} & 0 \\
0 & \pder{H_2}{X^2} & 0 \\
0 & 0 & \pder{H_3}{X^3} \\
\end{pmatrix},\end{split}\]
which can be further simplified as
\[\begin{split}\begin{pmatrix}
\pder{H_1}{X^1} & \pder{H_2}{X^1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix},\end{split}\]
by utilising the linearity of the mapping functions \(f_2, f_3\).