Energy diffusion and dissipationΒΆ

The divergence of a second-order tensor is given by the sum of

\[\begin{split}\newcommand{\tmpa}[2]{ \frac{1}{H_{#1}} \pder{H_{#1}}{X^{#2}} \left( S^{#1 #2} + S^{#2 #1} \right) } \newcommand{\tmpb}[2]{ \frac{H_{#2}}{H_{#1} H_{#1}} \pder{H_{#2}}{X^{#1}} S^{#2 #2} } \newcommand{\tmpc}[2]{ \frac{1}{J} \pder{}{X^{#2}} \left( J S^{#1 #2} \right) } \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpc{1}{1} + \tmpc{1}{2} + \tmpc{1}{3} \\ \tmpc{2}{1} + \tmpc{2}{2} + \tmpc{2}{3} \\ \tmpc{3}{1} + \tmpc{3}{2} + \tmpc{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpa{1}{1} + \tmpa{1}{2} + \tmpa{1}{3} \\ \tmpa{2}{1} + \tmpa{2}{2} + \tmpa{2}{3} \\ \tmpa{3}{1} + \tmpa{3}{2} + \tmpa{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} - \tmpb{1}{1} - \tmpb{1}{2} - \tmpb{1}{3} \\ - \tmpb{2}{1} - \tmpb{2}{2} - \tmpb{2}{3} \\ - \tmpb{3}{1} - \tmpb{3}{2} - \tmpb{3}{3} \end{pmatrix}.\end{split}\]

I consider the inner product of this vector and the velocity vector:

\[\vec{u} = \sum_i U^i \vec{E}_i.\]

The first part yields

\[\frac{1}{J} \pder{}{X^1} \left( J U^1 S^{1 1} \right) + \frac{1}{J} \pder{}{X^2} \left( J U^1 S^{1 2} \right) + \frac{1}{J} \pder{}{X^3} \left( J U^1 S^{1 3} \right) - \pder{U^1}{X^1} S^{1 1} - \pder{U^1}{X^2} S^{1 2} - \pder{U^1}{X^3} S^{1 3}\]
\[\frac{1}{J} \pder{}{X^1} \left( J U^2 S^{2 1} \right) + \frac{1}{J} \pder{}{X^2} \left( J U^2 S^{2 2} \right) + \frac{1}{J} \pder{}{X^3} \left( J U^2 S^{2 3} \right) - \pder{U^2}{X^1} S^{2 1} - \pder{U^2}{X^2} S^{2 2} - \pder{U^2}{X^3} S^{2 3}\]
\[\frac{1}{J} \pder{}{X^1} \left( J U^3 S^{3 1} \right) + \frac{1}{J} \pder{}{X^2} \left( J U^3 S^{3 2} \right) + \frac{1}{J} \pder{}{X^3} \left( J U^3 S^{3 3} \right) - \pder{U^3}{X^1} S^{3 1} - \pder{U^3}{X^2} S^{3 2} - \pder{U^3}{X^3} S^{3 3}\]

In each term, the first-three terms describe the diffusion of the energy, while the last-three terms are the dissipation of the energy.

The rest of the vector yields the sum of

\[S^{1 1} \left( \frac{2}{H_1} \pder{H_1}{X^1} U^1 - \frac{H_1}{H_1 H_1} \pder{H_1}{X^1} U^1 - \frac{H_1}{H_2 H_2} \pder{H_1}{X^2} U^2 - \frac{H_1}{H_3 H_3} \pder{H_1}{X^3} U^3 \right)\]
\[S^{1 2} \left( \frac{1}{H_1} \pder{H_1}{X^2} U^1 + \frac{1}{H_2} \pder{H_2}{X^1} U^2 \right)\]
\[S^{1 3} \left( \frac{1}{H_1} \pder{H_1}{X^3} U^1 + \frac{1}{H_3} \pder{H_3}{X^1} U^3 \right)\]
\[S^{2 1} \left( \frac{1}{H_1} \pder{H_1}{X^2} U^1 + \frac{1}{H_2} \pder{H_2}{X^1} U^2 \right)\]
\[S^{2 2} \left( \frac{2}{H_2} \pder{H_2}{X^2} U^2 - \frac{H_2}{H_1 H_1} \pder{H_2}{X^1} U^1 - \frac{H_2}{H_2 H_2} \pder{H_2}{X^2} U^2 - \frac{H_2}{H_3 H_3} \pder{H_2}{X^3} U^3 \right)\]
\[S^{2 3} \left( \frac{1}{H_3} \pder{H_3}{X^2} U^3 + \frac{1}{H_2} \pder{H_2}{X^3} U^2 \right)\]
\[S^{3 1} \left( \frac{1}{H_1} \pder{H_1}{X^3} U^1 + \frac{1}{H_3} \pder{H_3}{X^1} U^3 \right)\]
\[S^{3 2} \left( \frac{1}{H_2} \pder{H_2}{X^3} U^2 + \frac{1}{H_3} \pder{H_3}{X^2} U^3 \right)\]
\[S^{3 3} \left( \frac{2}{H_3} \pder{H_3}{X^3} U^3 - \frac{H_3}{H_1 H_1} \pder{H_3}{X^1} U^1 - \frac{H_3}{H_2 H_2} \pder{H_3}{X^2} U^2 - \frac{H_3}{H_3 H_3} \pder{H_3}{X^3} U^3 \right)\]