Second-order methods¶
Second-order explicit Runge-Kutta methods are given by
\[ \begin{align}\begin{aligned}& q^0 = p^n\\& q^1 = p^n + a_{1,0} f \left( q^0 \right) \Delta t\\& q^2 = p^n + a_{2,0} f \left( q^0 \right) \Delta t + a_{2,1} f \left( q^1 \right) \Delta t\\& p^{n + 1} = q^2\end{aligned}\end{align} \]
The Butcher tableau is
\[\begin{split}\begin{array}{c|cc}
b_0 & a_{0,0} & a_{0,1} \\
b_1 & a_{1,0} & a_{1,1} \\
\hline
& a_{2,0} & a_{2,1} \\
\end{array}
=
\begin{array}{c|cc}
0 & 0 & 0 \\
\alpha & \alpha & 0 \\
\hline
& 1 - \frac{1}{2 \alpha} & \frac{1}{2 \alpha} \\
\end{array}\end{split}\]
where the elements are constrained by a free parameter \(\alpha\).
The low-storage schemes can be derived as follows.
First, we substitute \(p^n\) with \(q^0\) and eliminate \(q^1\) from the third relation:
\[ \begin{align}\begin{aligned}& q^0 = p^n\\& q^1 = q^0 + a_{1,0} f \left( q^0 \right) \Delta t\\& q^2 = q^1 + \left( - a_{1,0} + a_{2,0} \right) f \left( q^0 \right) \Delta t + a_{2,1} f \left( q^1 \right) \Delta t\\& p^{n + 1} = q^2\end{aligned}\end{align} \]
Then the pre-factors are rearranged:
\[ \begin{align}\begin{aligned}& q^0 = p^n\\& q^1 = q^0 + a_{1,0} f \left( q^0 \right) \Delta t\\& q^2 = q^1 + a_{2,1} \left[ \frac{- a_{1,0} + a_{2,0}}{a_{2,1}} f \left( q^0 \right) + f \left( q^1 \right) \right] \Delta t\\& p^{n + 1} = q^2\end{aligned}\end{align} \]
Finally, we define \(r^k\), which store the computed right-hand-side terms of the differential equation:
\[ \begin{align}\begin{aligned}& q^0 = p^n\\& r^0 = f \left( q^0 \right)\\& q^1 = q^0 + a_{1,0} r^0 \Delta t\\& r^1 = \frac{- a_{1,0} + a_{2,0}}{a_{2,1}} f \left( q^0 \right) + f \left( q^1 \right)\\& q^2 = q^1 + a_{2,1} r^1 \Delta t\\& p^{n + 1} = q^2\end{aligned}\end{align} \]
to obtain
\[\begin{split}\begin{array}{c|cc}
k & 0 & 1 \\
\hline
\beta^k & 0 & \frac{- a_{1,0} + a_{2,0}}{a_{2,1}} \\
\gamma^k & a_{1,0} & a_{2,1}
\end{array}
=
\begin{array}{c|cc}
k & 0 & 1 \\
\hline
\beta^k & 0 & - 2 \alpha^2 + 2 \alpha - 1 \\
\gamma^k & \alpha & \frac{1}{2 \alpha}
\end{array}\end{split}\]
Unlike the first-order method, there are countless low-storage schemes yielding second-order accuracy due to the presence of the free parameter \(\alpha\). The following methods are popular among others.
Explicit mid-point method¶
\[\begin{split}\alpha = \frac{1}{2}
\Rightarrow
\begin{array}{c|cc}
k & 0 & 1 \\
\hline
\beta^k & 0 & - \frac{1}{2} \\
\gamma^k & \frac{1}{2} & 1
\end{array}\end{split}\]
Heun’s method¶
\[\begin{split}\alpha = 1
\Rightarrow
\begin{array}{c|cc}
k & 0 & 1 \\
\hline
\beta^k & 0 & - 1 \\
\gamma^k & 1 & \frac{1}{2}
\end{array}\end{split}\]
Ralston’s method¶
\[\begin{split}\alpha = \frac{2}{3}
\Rightarrow
\begin{array}{c|cc}
k & 0 & 1 \\
\hline
\beta^k & 0 & - \frac{5}{9} \\
\gamma^k & \frac{2}{3} & \frac{3}{4}
\end{array}\end{split}\]