#################### Second-order methods #################### Second-order explicit Runge-Kutta methods are given by .. math:: & q^0 = p^n & q^1 = p^n + a_{1,0} f \left( q^0 \right) \Delta t & q^2 = p^n + a_{2,0} f \left( q^0 \right) \Delta t + a_{2,1} f \left( q^1 \right) \Delta t & p^{n + 1} = q^2 The Butcher tableau is .. math:: \begin{array}{c|cc} b_0 & a_{0,0} & a_{0,1} \\ b_1 & a_{1,0} & a_{1,1} \\ \hline & a_{2,0} & a_{2,1} \\ \end{array} = \begin{array}{c|cc} 0 & 0 & 0 \\ \alpha & \alpha & 0 \\ \hline & 1 - \frac{1}{2 \alpha} & \frac{1}{2 \alpha} \\ \end{array} where the elements are constrained by a free parameter :math:`\alpha`. The low-storage schemes can be derived as follows. First, we substitute :math:`p^n` with :math:`q^0` and eliminate :math:`q^1` from the third relation: .. math:: & q^0 = p^n & q^1 = q^0 + a_{1,0} f \left( q^0 \right) \Delta t & q^2 = q^1 + \left( - a_{1,0} + a_{2,0} \right) f \left( q^0 \right) \Delta t + a_{2,1} f \left( q^1 \right) \Delta t & p^{n + 1} = q^2 Then the pre-factors are rearranged: .. math:: & q^0 = p^n & q^1 = q^0 + a_{1,0} f \left( q^0 \right) \Delta t & q^2 = q^1 + a_{2,1} \left[ \frac{- a_{1,0} + a_{2,0}}{a_{2,1}} f \left( q^0 \right) + f \left( q^1 \right) \right] \Delta t & p^{n + 1} = q^2 Finally, we define :math:`r^k`, which store the computed right-hand-side terms of the differential equation: .. math:: & q^0 = p^n & r^0 = f \left( q^0 \right) & q^1 = q^0 + a_{1,0} r^0 \Delta t & r^1 = \frac{- a_{1,0} + a_{2,0}}{a_{2,1}} f \left( q^0 \right) + f \left( q^1 \right) & q^2 = q^1 + a_{2,1} r^1 \Delta t & p^{n + 1} = q^2 to obtain .. math:: \begin{array}{c|cc} k & 0 & 1 \\ \hline \beta^k & 0 & \frac{- a_{1,0} + a_{2,0}}{a_{2,1}} \\ \gamma^k & a_{1,0} & a_{2,1} \end{array} = \begin{array}{c|cc} k & 0 & 1 \\ \hline \beta^k & 0 & - 2 \alpha^2 + 2 \alpha - 1 \\ \gamma^k & \alpha & \frac{1}{2 \alpha} \end{array} Unlike the first-order method, there are countless low-storage schemes yielding second-order accuracy due to the presence of the free parameter :math:`\alpha`. The following methods are popular among others. ************************* Explicit mid-point method ************************* .. math:: \alpha = \frac{1}{2} \Rightarrow \begin{array}{c|cc} k & 0 & 1 \\ \hline \beta^k & 0 & - \frac{1}{2} \\ \gamma^k & \frac{1}{2} & 1 \end{array} ************* Heun's method ************* .. math:: \alpha = 1 \Rightarrow \begin{array}{c|cc} k & 0 & 1 \\ \hline \beta^k & 0 & - 1 \\ \gamma^k & 1 & \frac{1}{2} \end{array} **************** Ralston's method **************** .. math:: \alpha = \frac{2}{3} \Rightarrow \begin{array}{c|cc} k & 0 & 1 \\ \hline \beta^k & 0 & - \frac{5}{9} \\ \gamma^k & \frac{2}{3} & \frac{3}{4} \end{array}