First-order methodΒΆ

A first-order explicit Runge-Kutta method is nothing else but the Euler-forward scheme:

\[ \begin{align}\begin{aligned}& q^0 = p^n\\& q^1 = p^n + a_{1, 0} f \left( q^0 \right) \Delta t\\& p^{n + 1} = q^1\end{aligned}\end{align} \]

The Butcher tableau is

\[\begin{split}\begin{array}{c|c} b_0 & a_{0,0} \\ \hline & a_{1,0} \\ \end{array} = \begin{array}{c|c} 0 & 0 \\ \hline & 1 \\ \end{array}\end{split}\]

This is already a low-storage scheme:

\[\begin{split}\begin{array}{c|c} k & 0 \\ \hline \beta^k & 0 \\ \gamma^k & 1 \end{array}\end{split}\]