Phoretic velocityΒΆ

According to Hu et al., Phys. Rev. Lett. (123), 2019, the phoretic velocity is given by

\[\vec{U} = - \vec{e}_{\vt} \frac{1}{2 \pi} \int_0^{2 \pi} M \vat{ \frac{1}{\vr} \pder{}{c}{\vt} }{\vr = 1} d \vt = M \left[ - \vec{e}_x \Re \left( C_1^s \right) + \vec{e}_y \Im \left( C_1^s \right) \right],\]

which is derived here.

Using

\[ \begin{align}\begin{aligned}\vec{e}_{\vt} & = - \vec{e}_x \sin \vt + \vec{e}_y \cos \vt\\& = - \vec{e}_x \frac{I}{2} \left[ \expp{I \vt} - \expp{- I \vt} \right] + \vec{e}_y \frac{1}{2} \left[ \expp{I \vt} + \expp{- I \vt} \right]\end{aligned}\end{align} \]

and

\[\vat{\pder{}{c}{\vt}}{\vr = 1} = \sum_k I k C_k^s \expp{I k \vt},\]

we see that

\[ \begin{align}\begin{aligned}- \frac{1}{2 \pi} \int_0^{2 \pi} M \frac{1}{\vr} \pder{}{c}{\vt} \vec{e}_{\vt} d \vt = & - \vec{e}_x \frac{1}{2 \pi} \int_0^{2 \pi} M \sum_k I k C_k^s \expp{I k \vt} \frac{I}{2} \left[ \expp{I \vt} - \expp{- I \vt} \right] d \vt\\& - \vec{e}_y \frac{1}{2 \pi} \int_0^{2 \pi} M \sum_k I k C_k^s \expp{I k \vt} \frac{1}{2} \left[ \expp{I \vt} + \expp{- I \vt} \right] d \vt\\= & + \vec{e}_x \frac{1}{2 \pi} \int_0^{2 \pi} M \sum_k \frac{k C_k^s}{2} \left[ \expp{I \left( k + 1 \right) \vt} - \expp{I \left( k - 1 \right) \vt} \right] d \vt\\& - I \vec{e}_y \frac{1}{2 \pi} \int_0^{2 \pi} M \sum_k \frac{k C_k^s}{2} \left[ \expp{I \left( k + 1 \right) \vt} + \expp{I \left( k - 1 \right) \vt} \right] d \vt.\end{aligned}\end{align} \]

It is readily apparent that the integral of the exponential functions in the range of \(\left[ 0, 2 \pi \right]\) is zero. Exceptions are when the exponent is zero:

\[\int_0^{2 \pi} 1 d \vt = 2 \pi.\]

Thus the phoretic velocity leads to

\[\vec{U} = M \left[ \vec{e}_x \left( - \frac{C_1^s}{2} - \frac{C_{-1}^s}{2} \right) + I \vec{e}_y \left( - \frac{C_1^s}{2} + \frac{C_{-1}^s}{2} \right) \right].\]

Because of \(c \in \mathbb{R}\), \(C_k^s\) fulfills the complex-conjugate property:

\[ \begin{align}\begin{aligned}\Re \left( C_{-1}^s \right) & = \Re \left( C_1^s \right),\\\Im \left( C_{-1}^s \right) & = - \Im \left( C_1^s \right).\end{aligned}\end{align} \]

Assigning these relations yields

\[\vec{U} = M \left[ - \vec{e}_x \Re \left( C_1^s \right) + \vec{e}_y \Im \left( C_1^s \right) \right],\]

and thus we conclude

\[ \begin{align}\begin{aligned}U_x = - M \Re \left( C_1^s \right),\\U_y = + M \Im \left( C_1^s \right).\end{aligned}\end{align} \]