Pressure-gradientΒΆ
The pressure-gradient terms
\[-
\frac{1}{\sfact{i}}
\dif{p}{\gcs{i}},\]
which contribute to the energy balance as follows:
\[ \begin{align}\begin{aligned}\newcommand{\tmp}[1]{
    J
    \vel{#1}
    \frac{1}{\sfact{#1}}
    \dif{p}{\gcs{#1}}
    =
    \sumzc
    \sumyc
    \sumxc
    J
    p
    \frac{1}{J}
    \dif{
        \left(
            \frac{J}{\sfact{#1}}
            \vel{#1}
        \right)
    }{\gcs{#1}}
}
-
\sumzc
\sumyc
\sumxf
\tmp{1},\\-
\sumzc
\sumyf
\sumxc
\tmp{2},\\-
\sumzf
\sumyc
\sumxc
\tmp{3}.\end{aligned}\end{align} \]
The sum of these three relations is
\[\sumzc
\sumyc
\sumxc
J
p
\left\{
    \frac{1}{J}
    \dif{
        \left(
            \frac{J}{\sfact{1}}
            \vel{1}
        \right)
    }{\gcs{1}}
    +
    \frac{1}{J}
    \dif{
        \left(
            \frac{J}{\sfact{2}}
            \vel{2}
        \right)
    }{\gcs{2}}
    +
    \frac{1}{J}
    \dif{
        \left(
            \frac{J}{\sfact{3}}
            \vel{3}
        \right)
    }{\gcs{3}}
\right\},\]
which is zero because the component inside the wavy parentheses is the incompressibility constraint.