Diffusion¶
Momentum¶
By utilising the relations listed in the prerequisite, the discrete diffusive terms in the momentum balances yield the following relations.
From the wall-normal momentum balance, we obtain
\[ \begin{align}\begin{aligned}&
-
\sumzc
\sumyc
\sumxc
J
\vgt{1}{1}
\sst{1}{1},\\&
-
\sumzc
\sumyf
\sumxf
J
\left(
    \frac{1}{\sfact{2}}
    \dif{\vel{1}}{\gcs{2}}
\right)
\sst{2}{1},\\&
-
\sumzf
\sumyc
\sumxf
J
\vgt{3}{1}
\sst{3}{1},\\&
-
\sumzc
\sumyc
\sumxc
J
\left\{
    \frac{1}{J}
    \dif{
        \left(
            \frac{J}{\sfact{1}}
        \right)
    }{\gcs{1}}
    \ave{
        \vel{1}
    }{\gcs{1}}
\right\}
\sst{2}{2}.\end{aligned}\end{align} \]
From the stream-wise momentum balance, we obtain
\[ \begin{align}\begin{aligned}&
-
\sumzc
\sumyf
\vat{
   \left(
      \frac{J}{\sfact{1}}
      \vel{2}
      \sst{1}{2}
   \right)
}{i = \frac{1}{2}}
-
\sumzc
\sumyf
\sumxf
J
\left(
   \frac{1}{\sfact{1}}
   \dif{\vel{2}}{\gcs{1}}
\right)
\sst{1}{2}
+
\sumzc
\sumyf
\vat{
   \left(
      \frac{J}{\sfact{1}}
      \vel{2}
      \sst{1}{2}
   \right)
}{i = \ngp{1} + \frac{1}{2}},\\&
-
\sumzc
\sumyc
\sumxc
J
\left(
   \frac{1}{\sfact{2}}
   \dif{\vel{2}}{\gcs{2}}
\right)
\sst{2}{2},\\&
-
\sumzf
\sumyf
\sumxc
J
\vgt{3}{2}
\sst{3}{2},\\&
\sumzc
\sumyf
\vat{J}{\frac{1}{2}}
\left\{
   \frac{1}{\vat{J}{\frac{1}{2}}}
   \vat{
      \dif{
         \left(
            \frac{J}{\sfact{1}}
         \right)
      }{
         \gcs{1}
      }
   }{\frac{1}{2}}
   \frac{\vat{\vel{2}}{1}}{2}
\right\}
\vat{
   \sst{2}{1}
}{\frac{1}{2}}
+
\sumzc
\sumyf
\sum_{i = \frac{3}{2}}^{\ngp{1} - \frac{1}{2}}
J
\left\{
   \frac{1}{J}
   \dif{
      \left(
         \frac{J}{\sfact{1}}
      \right)
   }{
      \gcs{1}
   }
   \ave{\vel{2}}{\gcs{1}}
\right\}
\sst{2}{1}
+
\sumzc
\sumyf
\vat{J}{\ngp{1} + \frac{1}{2}}
\left\{
   \frac{1}{\vat{J}{\ngp{1} + \frac{1}{2}}}
   \vat{
      \dif{
         \left(
            \frac{J}{\sfact{1}}
         \right)
      }{
         \gcs{1}
      }
   }{\ngp{1} + \frac{1}{2}}
   \frac{\vat{\vel{2}}{\ngp{1}}}{2}
\right\}
\vat{
   \sst{2}{1}
}{\ngp{1} + \frac{1}{2}}.\end{aligned}\end{align} \]
From the span-wise momentum balance, we obtain
\[ \begin{align}\begin{aligned}&
-
\sumzf
\sumyc
\sumxf
J
\vgt{1}{3}
\sst{1}{3},\\&
-
\sumzf
\sumyf
\sumxc
J
\vgt{2}{3}
\sst{2}{3},\\&
-
\sumzc
\sumyc
\sumxc
J
\vgt{3}{3}
\sst{3}{3}.\end{aligned}\end{align} \]
In total, we have
\[ \begin{align}\begin{aligned}&
-
\sumzc
\sumyc
\sumxc
J
\vgt{1}{1}
\sst{1}{1}
-
\sumzc
\sumyf
\sumxf
J
\vgt{2}{1}
\sst{2}{1}
-
\sumzf
\sumyc
\sumxf
J
\vgt{3}{1}
\sst{3}{1},\\&
-
\sumzc
\sumyf
\sumxf
J
\vgt{1}{2}
\sst{1}{2}
-
\sumzc
\sumyc
\sumxc
J
\vgt{2}{2}
\sst{2}{2}
-
\sumzf
\sumyf
\sumxc
J
\vgt{3}{2}
\sst{3}{2},\\&
-
\sumzf
\sumyc
\sumxf
J
\vgt{1}{3}
\sst{1}{3}
-
\sumzf
\sumyf
\sumxc
J
\vgt{2}{3}
\sst{2}{3}
-
\sumzc
\sumyc
\sumxc
J
\vgt{3}{3}
\sst{3}{3}\end{aligned}\end{align} \]
as the dissipative terms, while
\[-
\sumzc
\sumyf
\vat{
   \left(
      \frac{J}{\sfact{1}}
      \vel{2}
      \sst{1}{2}
   \right)
}{i = \frac{1}{2}}
+
\sumzc
\sumyf
\vat{
   \left(
      \frac{J}{\sfact{1}}
      \vel{2}
      \sst{1}{2}
   \right)
}{i = \ngp{1} + \frac{1}{2}}\]
as the energy transfer on the walls, respectively.
Scalar¶
The global diffusive effects of the scalar transport on the quadratic quantity lead to
\[\sumzc
\sumyc
\sumxc
J
T
\left\{
    \dscalardif{1}
    \dscalardif{2}
    \dscalardif{3}
\right\},\]
giving
\[-
\sumzc
\sumyc
\sumxf
J
\kappa
\frac{1}{\sfact{1}}
\dif{T}{\gcs{1}}
\frac{1}{\sfact{1}}
\dif{T}{\gcs{1}}
-
\sumzc
\sumyf
\sumxc
J
\kappa
\frac{1}{\sfact{2}}
\dif{T}{\gcs{2}}
\frac{1}{\sfact{2}}
\dif{T}{\gcs{2}}
-
\sumzf
\sumyc
\sumxc
J
\kappa
\frac{1}{\sfact{3}}
\dif{T}{\gcs{3}}
\frac{1}{\sfact{3}}
\dif{T}{\gcs{3}}\]
as the dissipative terms, while
\[-
\sumzc
\sumyc
\vat{
    \left(
        \frac{J}{\sfact{1}}
        \kappa
        T
        \frac{1}{\sfact{1}}
        \dif{T}{\gcs{1}}
    \right)
}{\frac{1}{2}}
+
\sumzc
\sumyc
\vat{
    \left(
        \frac{J}{\sfact{1}}
        \kappa
        T
        \frac{1}{\sfact{1}}
        \dif{T}{\gcs{1}}
    \right)
}{\ngp{1} + \frac{1}{2}}\]
as the transport on the walls.