################## Christoffel symbol ################## *********** Description *********** ========== Definition ========== I consider the Christoffel symbol of the second kind .. _christoffel: .. math:: \christoffel, which will appear when I consider :ref:`the change of basis vectors `. Here I assume :math:`x^l` is twice-differentiable to find :math:`\Gamma_{ij}^k = \Gamma_{ji}^k`. ========================== Relation with scale factor ========================== By using :ref:`the relation for the transformation matrices `: .. math:: \jacobiconv, I have .. math:: \Gamma_{ij}^k = \frac{1}{H_k H_k} \sum_l \pder{}{X^i} \left( \pder{x^l}{X^j} \right) \pder{x^l}{X^k}. Here I recall :ref:`the orthogonality `: .. math:: \orthogonal to find .. _metric_tensor: .. math:: \metrictensor, because .. math:: \vec{E}_i \cdot \vec{E}_j & = \left( \sum_k \pder{x^k}{X^i} \vec{e}_k \right) \cdot \left( \sum_l \pder{x^l}{X^j} \vec{e}_l \right) \\ & = \sum_{kl} \pder{x^k}{X^i} \pder{x^l}{X^j} \vec{e}_k \cdot \vec{e}_l \\ & = \sum_{kl} \pder{x^k}{X^i} \pder{x^l}{X^j} \delta_{kl} \\ & = \sum_k \pder{x^k}{X^i} \pder{x^k}{X^j}. Furthermore, I consider its derivative with respect to :math:`X^l`: .. math:: \pder{}{X^l} \left( H_i H_j \delta_{ij} \right) & = \pder{}{X^l} \left( \sum_k \pder{x^k}{X^i} \pder{x^k}{X^j} \right) \\ & = \sum_k \pder{}{X^l} \left( \pder{x^k}{X^i} \right) \pder{x^k}{X^j} + \sum_k \pder{}{X^l} \left( \pder{x^k}{X^j} \right) \pder{x^k}{X^i} \\ & = H_j H_j \Gamma_{il}^j + H_i H_i \Gamma_{jl}^i, which is equivalent to .. math:: \newcommand{\csymb}[3]{ H_{#1} H_{#1} \Gamma_{#2#3}^{#1} = \pder{}{X^#3} \left( H_{#1} H_{#2} \delta_{#1#2} \right) - H_{#2} H_{#2} \Gamma_{#1#3}^{#2} } \csymb{i}{j}{l}, \csymb{j}{l}{i}, \csymb{l}{i}{j}. Finally I obtain an explicit relation of the Christoffel symbol of the second kind and the scale factors (the indices are interchanged for later convenience): .. _from_christoffel_to_scale_factor: .. math:: \fromchristoffeltoscalefactor. ================ Useful relations ================ Assuming :math:`k = j` yields .. math:: \Gamma_{ij}^j = \frac{1}{H_j} \pder{H_j}{X^i}. Now I consider .. math:: \sum_j \Gamma_{ij}^j \mathcal{Q}, where :math:`\mathcal{Q}` is an arbitrary order of tensor. This relation is .. math:: \sum_j \frac{1}{H_j} \pder{H_j}{X^i} \mathcal{Q} = \sum_j \frac{1}{J} \frac{J}{H_j} \pder{H_j}{X^i} \mathcal{Q}. In summary, I have .. _sum_of_christoffel: .. math:: \sumofchristoffel.