Covariant basis

Description

I consider

EiXj.

By using the relation

Ei=jxjXiej,

this is equal to

Xj(lxlXiel)=lXj(xlXi)el+lxlXielXj.

Since the reference Cartesian basis vectors are constant, the second term disappears and I am left with

lXj(xlXi)el=lXj(xlXi)(kXkxlEk)=klXj(xlXi)XkxlEk=k{lXj(xlXi)Xkxl}Ek=kΓkijEk,

where Γkij is the Christoffel symbol of the second kind:

ΓkijlXi(xlXj)Xkxl,

and by using the relation between the symbol and the scale factors:

2HkHkΓkij=Xk(δijHiHj)+Xi(δjkHjHk)+Xj(δkiHkHi),

the change of the basis vector is given by

k12HkHk{Xk(δijHiHj)+Xj(δkiHkHi)+Xi(δjkHjHk)}Ek=kδijHj2HkHkHiXkEkkδijHi2HkHkHjXkEk+1HiHiXjEi+1HjHjXiEj,

and in summary:

EiXj=kδijHj2HkHkHiXkEkkδijHi2HkHkHjXkEk+1HiHiXjEi+1HjHjXiEj.

This relation is written down explicitly below for an intuitive understanding.

(E1X1E2X1E3X1E1X2E2X2E3X2E1X3E2X3E3X3)=(kH1HkHkH1XkEk000kH2HkHkH2XkEk000kH3HkHkH3XkEk)+(01H1H1X2E1+1H2H2X1E21H1H1X3E1+1H3H3X1E3sym.01H2H2X3E2+1H3H3X2E3sym.sym.0).

Example

The changes of the basis vectors

(E1X1E2X1E3X1E1X2E2X2E3X2E1X3E2X3E3X3)

read as follows.

Cylindrical coordinates

(01X1E201X1E2X1E10000).

Rectilinear coordinates

(1H1H1X1E10001H2H2X2E20001H3H3X3E3).

Application

(1H1H1X1E11H2H2X1E201H2H2X1E2H2H1H1H2X1E10000).