Covariant basis¶
Description¶
I consider
∂→Ei∂Xj.
By using the relation
→Ei=∑j∂xj∂Xi→ej,
this is equal to
∂∂Xj(∑l∂xl∂Xi→el)=∑l∂∂Xj(∂xl∂Xi)→el+∑l∂xl∂Xi∂→el∂Xj.
Since the reference Cartesian basis vectors are constant, the second term disappears and I am left with
∑l∂∂Xj(∂xl∂Xi)→el=∑l∂∂Xj(∂xl∂Xi)(∑k∂Xk∂xl→Ek)=∑kl∂∂Xj(∂xl∂Xi)∂Xk∂xl→Ek=∑k{∑l∂∂Xj(∂xl∂Xi)∂Xk∂xl}→Ek=∑kΓkij→Ek,
where Γkij is the Christoffel symbol of the second kind:
Γkij≡∑l∂∂Xi(∂xl∂Xj)∂Xk∂xl,
and by using the relation between the symbol and the scale factors:
2HkHkΓkij=−∂∂Xk(δijHiHj)+∂∂Xi(δjkHjHk)+∂∂Xj(δkiHkHi),
the change of the basis vector is given by
∑k12HkHk{−∂∂Xk(δijHiHj)+∂∂Xj(δkiHkHi)+∂∂Xi(δjkHjHk)}→Ek=−∑kδijHj2HkHk∂Hi∂Xk→Ek−∑kδijHi2HkHk∂Hj∂Xk→Ek+1Hi∂Hi∂Xj→Ei+1Hj∂Hj∂Xi→Ej,
and in summary:
∂→Ei∂Xj=−∑kδijHj2HkHk∂Hi∂Xk→Ek−∑kδijHi2HkHk∂Hj∂Xk→Ek+1Hi∂Hi∂Xj→Ei+1Hj∂Hj∂Xi→Ej.
This relation is written down explicitly below for an intuitive understanding.
(∂→E1∂X1∂→E2∂X1∂→E3∂X1∂→E1∂X2∂→E2∂X2∂→E3∂X2∂→E1∂X3∂→E2∂X3∂→E3∂X3)=−(∑kH1HkHk∂H1∂Xk→Ek000∑kH2HkHk∂H2∂Xk→Ek000∑kH3HkHk∂H3∂Xk→Ek)+(01H1∂H1∂X2→E1+1H2∂H2∂X1→E21H1∂H1∂X3→E1+1H3∂H3∂X1→E3sym.01H2∂H2∂X3→E2+1H3∂H3∂X2→E3sym.sym.0).
Example¶
The changes of the basis vectors
(∂→E1∂X1∂→E2∂X1∂→E3∂X1∂→E1∂X2∂→E2∂X2∂→E3∂X2∂→E1∂X3∂→E2∂X3∂→E3∂X3)
read as follows.
Cylindrical coordinates¶
(01X1→E201X1→E2−X1→E10000).
Rectilinear coordinates¶
(−1H1∂H1∂X1→E1000−1H2∂H2∂X2→E2000−1H3∂H3∂X3→E3).
Application¶
(−1H1∂H1∂X1→E11H2∂H2∂X1→E201H2∂H2∂X1→E2−H2H1H1∂H2∂X1→E10000).