Pendulum - N-body pendulum simulator

Kinetic energy

To begin with, I consider the velocity of the \(\ia\)-th object on the Cartesian coordinate.

The time derivative of the position vector:

\[\posvec\]

yields

\[- \vec{e}_x \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } + \vec{e}_y \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} },\]

which is the velocity of the \(\ia\)-th object. The kinetic energy of this object is given by

\[T_{\ia} = \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } \right)^2 + \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} } \right)^2,\]

and thus the total kinetic energy of the system is

\[ \begin{align}\begin{aligned}T & \equiv \sum_{\ia = 0}^{N - 1} T_{\ia}\\& = \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } \right)^2 + \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} } \right)^2\\& = \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } \sum_{\ic = 0}^{\ia} l \vel_{\ic} \sin{ \pos_{\ic} } + \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} } \sum_{\ic = 0}^{\ia} l \vel_{\ic} \cos{ \pos_{\ic} }\\& = \frac{1}{2} m l^2 \sum_{\ia = 0}^{N - 1} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} \vel_{\ib} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right).\end{aligned}\end{align} \]

To proceed, I use the identity:

\[\sum_{\ia = 0}^{N - 1} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} Q_{\ib \ic} = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic}.\]
Derivation

First, the base case with \(N = 1\) is true since

\[\sum_{\ia = 0}^{0} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} Q_{\ib \ic} = \sum_{\ib = 0}^{0} \sum_{\ic = 0}^{0} \left\{ 1 - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} = Q_{0 0}.\]

Now I assume that the statement is true for \(N\) and consider with respect to \(N + 1\).

The left-hand-side term of the statement leads to

\[\sum_{\ia = 0}^{N} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} Q_{\ib \ic} = \sum_{\ia = 0}^{N - 1} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} Q_{\ib \ic} + \sum_{\ib = 0}^{N} \sum_{\ic = 0}^{N} Q_{\ib \ic},\]

while the right-hand-side term of the statement is

\[ \begin{align}\begin{aligned}\sum_{\ib = 0}^{N} \sum_{\ic = 0}^{N} \left\{ N + 1 - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} & = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N} \left\{ N + 1 - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} + \sum_{\ic = 0}^{N} \left\{ N + 1 - \max \left( N, \ic \right) \right\} Q_{N \ic}\\& = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N + 1 - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} + \sum_{\ic = 0}^{N} \left\{ N + 1 - \max \left( N, \ic \right) \right\} Q_{N \ic} + \sum_{\ib = 0}^{N - 1} \left\{ N + 1 - \max \left( \ib, N \right) \right\} Q_{\ib N}\\& = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} + \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} Q_{\ib \ic} + \sum_{\ic = 0}^{N} Q_{N \ic} + \sum_{\ib = 0}^{N - 1} Q_{\ib N}\\& = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} + \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N} Q_{\ib \ic} + \sum_{\ic = 0}^{N} Q_{N \ic}\\& = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic} + \sum_{\ib = 0}^{N} \sum_{\ic = 0}^{N} Q_{\ib \ic}.\end{aligned}\end{align} \]

Now the first terms are equal according to the assumption, while the second terms are identical.

As a consequence, I obtain

\[T = \kene.\]

Generalised velocity part

First of all, I consider

\[ \begin{align}\begin{aligned}\pder{T}{\vel_{\ia}} & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \pder{\vel_{\ib}}{\vel_{\ia}} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \pder{\vel_{\ic}}{\vel_{\ia}} \cos \left( \pos_{\ib} - \pos_{\ic} \right),\end{aligned}\end{align} \]

where the two terms are equal by interchanging the indices to obtain

\[ \begin{align}\begin{aligned}\pder{T}{\vel_{\ia}} & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \pder{\vel_{\ic}}{\vel_{\ia}} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \delta_{\ic \ia} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ib, \ia \right) \right\} \vel_{\ib} \cos \left( \pos_{\ib} - \pos_{\ia} \right)\\& = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ib} \cos \left( \pos_{\ia} - \pos_{\ib} \right).\end{aligned}\end{align} \]

Differentiating this relation with respect to time leads to

\[ \begin{align}\begin{aligned}\tder{}{t} \pder{T}{\vel_{\ia}} & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \tder{}{t} \left\{ \vel_{\ib} \cos \left( \pos_{\ia} - \pos_{\ib} \right) \right\}\\& = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \tder{\vel_{\ib}}{t} \cos \left( \pos_{\ia} - \pos_{\ib} \right)\\& - m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ib} \left( \vel_{\ia} - \vel_{\ib} \right) \sin \left( \pos_{\ia} - \pos_{\ib} \right).\end{aligned}\end{align} \]

Generalised coordinate part

\[ \begin{align}\begin{aligned}\pder{T}{\pos_{\ia}} & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \pder{}{\pos_{\ia}} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& = - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \left( \pder{\pos_{\ib}}{\pos_{\ia}} - \pder{\pos_{\ic}}{\pos_{\ia}} \right) \sin \left( \pos_{\ib} - \pos_{\ic} \right)\\& = - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \left( \delta_{\ib \ia} - \delta_{\ic \ia} \right) \sin \left( \pos_{\ib} - \pos_{\ic} \right)\\& = - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \delta_{\ib \ia} \sin \left( \pos_{\ib} - \pos_{\ic} \right) + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \delta_{\ic \ia} \sin \left( \pos_{\ib} - \pos_{\ic} \right)\\& = - \frac{1}{2} m l^2 \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ia, \ic \right) \right\} \vel_{\ia} \vel_{\ic} \sin \left( \pos_{\ia} - \pos_{\ic} \right) + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ib, \ia \right) \right\} \vel_{\ib} \vel_{\ia} \sin \left( \pos_{\ib} - \pos_{\ia} \right)\\& = - m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ia} \vel_{\ib} \sin \left( \pos_{\ia} - \pos_{\ib} \right).\end{aligned}\end{align} \]

Total

In the Lagrange’s equation, the following terms contribute:

\[ \begin{align}\begin{aligned}\tder{}{t} \pder{T}{\vel_{\ia}} - \pder{T}{\pos_{\ia}} & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \tder{\vel_{\ib}}{t} \cos \left( \pos_{\ia} - \pos_{\ib} \right)\\& + m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ib} \vel_{\ib} \sin \left( \pos_{\ia} - \pos_{\ib} \right).\end{aligned}\end{align} \]