Pendulum - N-body pendulum simulator

Energy conservation

The conservation of the total energy states that

\[E \equiv T + U\]

is constant, where

\[ \begin{align}\begin{aligned}T & = \kene,\\U & = \pene.\end{aligned}\end{align} \]

To derive the energy conservation, I consider to differentiate this equation with respect to time.

Kinetic energy contribution

\[ \begin{align}\begin{aligned}\tder{T}{t} & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \tder{\vel_{\ib}}{t} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \tder{\vel_{\ic}}{t} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \tder{}{t} \cos \left( \pos_{\ib} - \pos_{\ic} \right),\end{aligned}\end{align} \]

where the first two terms are equal and the sum is

\[m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \tder{\vel_{\ib}}{t} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right),\]

while the last term is

\[ \begin{align}\begin{aligned}& - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \vel_{\ib} \sin \left( \pos_{\ib} - \pos_{\ic} \right)\\& + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \vel_{\ic} \sin \left( \pos_{\ib} - \pos_{\ic} \right)\\= & - m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \vel_{\ib} \sin \left( \pos_{\ib} - \pos_{\ic} \right).\end{aligned}\end{align} \]

As a result,

\[ \begin{align}\begin{aligned}\tder{T}{t} & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \tder{\vel_{\ib}}{t} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right)\\& - m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \vel_{\ib} \sin \left( \pos_{\ib} - \pos_{\ic} \right)\\& = m l^2 \sum_{\ic = 0}^{N - 1} \vel_{\ic} \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ic, \ib \right) \right\} \left\{ \tder{\vel_{\ib}}{t} \cos \left( \pos_{\ic} - \pos_{\ib} \right) + \vel_{\ib} \vel_{\ib} \sin \left( \pos_{\ic} - \pos_{\ib} \right) \right\}.\end{aligned}\end{align} \]

Potential energy contribution

The potential energy contribution is

\[ \begin{align}\begin{aligned}\tder{U}{t} & = - m g l \sum_{\ib = 0}^{N - 1} \left( N - \ib \right) \tder{}{t} \left( \sin \pos_{\ib} \right)\\& = - m g l \sum_{\ic = 0}^{N - 1} \left( N - \ic \right) \vel_{\ic} \cos \pos_{\ic}.\end{aligned}\end{align} \]

Energy conservation

The temporal derivative of the total energy results in

\[\tder{E}{t} = \sum_{\ia = 0}^{N - 1} \vel_{\ia} \left\{ \lag \right\},\]

which is indeed zero since the relation in the wavy brackets is the left-hand-side of the Lagrange’s equation.