Normalised basis

Description

Assigning

\[\vec{u} = \sum_i \hat{U}^i \vec{\hat{E}}_i\]

yields

\[\pder{}{t} \left( \sum_i \hat{U}^i \vec{\hat{E}}_i \right) + \sum_j \frac{\hat{V}^j}{H_j} \pder{}{X^j} \left( \sum_i \hat{U}^i \vec{\hat{E}}_i \right) = \sum_i \pder{\hat{U}^i}{t} \vec{\hat{E}}_i + \sum_{ij} \frac{\hat{V}^j}{H_j} \pder{\hat{U}^i}{X^j} \vec{\hat{E}}_i + \sum_{ij} \frac{\hat{V}^j}{H_j} \hat{U}^i \pder{\vec{\hat{E}}_i}{X^j}.\]

By using the relation:

\[\dehatdx{i}{j}{k},\]

the last term leads to the sum of

\[\sum_{ij} \frac{\hat{V}^j}{H_j} \hat{U}^i \frac{1}{H_i} \pder{H_j}{X^i} \vec{\hat{E}}_j = \sum_{ij} \frac{\hat{V}^i}{H_i} \hat{U}^j \frac{1}{H_j} \pder{H_i}{X^j} \vec{\hat{E}}_i\]

and

\[- \sum_{ijk} \frac{\hat{V}^j}{H_j} \hat{U}^i \delta_{ij} \frac{1}{H_k} \pder{H_i}{X^k} \vec{\hat{E}}_k = - \sum_{ij} \frac{\hat{V}^j}{H_j} \hat{U}^j \frac{1}{H_i} \pder{H_j}{X^i} \vec{\hat{E}}_i.\]

The explicit form is the sum of

\[\begin{split}\newcommand{\tmp}[1]{ \pder{\hat{U}^{#1}}{t} } \begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} \tmp{1} \\ \tmp{2} \\ \tmp{3} \end{pmatrix},\end{split}\]
\[\begin{split}\newcommand{\tmp}[2]{ \frac{\hat{V}^{#2}}{H_{#2}} \pder{\hat{U}^{#1}}{X^{#2}} } \begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} \tmp{1}{1} + \tmp{1}{2} + \tmp{1}{3} \\ \tmp{2}{1} + \tmp{2}{2} + \tmp{2}{3} \\ \tmp{3}{1} + \tmp{3}{2} + \tmp{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\newcommand{\tmp}[2]{ \frac{\hat{V}^{#1}}{H_{#1}} \hat{U}^{#2} \frac{1}{H_{#2}} \pder{H_{#1}}{X^{#2}} } \begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} \tmp{1}{1} + \tmp{1}{2} + \tmp{1}{3} \\ \tmp{2}{1} + \tmp{2}{2} + \tmp{2}{3} \\ \tmp{3}{1} + \tmp{3}{2} + \tmp{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\newcommand{\tmp}[2]{ \frac{\hat{V}^{#2}}{H_{#2}} \hat{U}^{#2} \frac{1}{H_{#1}} \pder{H_{#2}}{X^{#1}} } \begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} - \tmp{1}{1} - \tmp{1}{2} - \tmp{1}{3} \\ - \tmp{2}{1} - \tmp{2}{2} - \tmp{2}{3} \\ - \tmp{3}{1} - \tmp{3}{2} - \tmp{3}{3} \end{pmatrix}.\end{split}\]

Example

The sum of

\[\vec{\hat{E}}_1 \left( \pder{\hat{U}^1}{t} + \hat{V}^1 \pder{\hat{U}^1}{X^1} + \frac{\hat{V}^2}{X^1} \pder{\hat{U}^1}{X^2} + \hat{V}^3 \pder{\hat{U}^1}{X^3} - \frac{\hat{V}^2}{X^1} \hat{U}^2 \right),\]
\[\vec{\hat{E}}_2 \left( \pder{\hat{U}^2}{t} + \hat{V}^1 \pder{\hat{U}^2}{X^1} + \frac{\hat{V}^2}{X^1} \pder{\hat{U}^2}{X^2} + \hat{V}^3 \pder{\hat{U}^2}{X^3} + \frac{\hat{V}^2}{X^1} \hat{U}^1 \right),\]
\[\vec{\hat{E}}_3 \left( \pder{\hat{U}^3}{t} + \hat{V}^1 \pder{\hat{U}^3}{X^1} + \frac{\hat{V}^2}{X^1} \pder{\hat{U}^3}{X^2} + \hat{V}^3 \pder{\hat{U}^3}{X^3} \right).\]