Covariant basis

Description

Assigning

\[\vec{u} = \sum_i U^i \vec{E}_i\]

yields

\[\pder{}{t} \left( \sum_i U^i \vec{E}_i \right) + \sum_j V^j \pder{}{X^j} \left( \sum_i U^i \vec{E}_i \right) = \sum_i \pder{U^i}{t} \vec{E}_i + \sum_{ij} V^j \pder{U^i}{X^j} \vec{E}_i + \sum_{ij} V^j U^i \pder{\vec{E}_i}{X^j}.\]

Regarding the last term, by adopting the relation:

\[\dedx{i}{j}{k},\]

the last term is reformulated as

\[\begin{split}& \sum_{ij} V^j U^i \frac{1}{H_i} \pder{H_i}{X^j} \vec{E}_i + \sum_{ij} V^i U^j \frac{1}{H_i} \pder{H_i}{X^j} \vec{E}_i - \sum_{ij} V^j U^j \frac{H_j}{H_i H_i} \pder{H_j}{X^i} \vec{E}_i \\ = & \sum_{ij} \left( V^j U^i + V^i U^j \right) \frac{1}{H_i} \pder{H_i}{X^j} \vec{E}_i - \sum_{ij} V^j U^j \frac{H_j}{H_i H_i} \pder{H_j}{X^i} \vec{E}_i.\end{split}\]

Explicitly, the material derivative is given by the sum of

\[\begin{split}\newcommand{\tmp}[1]{ \pder{U^{#1}}{t} } \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmp{1} \\ \tmp{2} \\ \tmp{3} \end{pmatrix},\end{split}\]
\[\begin{split}\newcommand{\tmp}[2]{ V^{#2} \pder{U^{#1}}{X^{#2}} } \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmp{1}{1} + \tmp{1}{2} + \tmp{1}{3} \\ \tmp{2}{1} + \tmp{2}{2} + \tmp{2}{3} \\ \tmp{3}{1} + \tmp{3}{2} + \tmp{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\newcommand{\tmp}[2]{ \left( V^{#2} U^{#1} + V^{#1} U^{#2} \right) \frac{1}{H_{#1}} \pder{H_{#1}}{X^{#2}} } \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmp{1}{1} + \tmp{1}{2} + \tmp{1}{3} \\ \tmp{2}{1} + \tmp{2}{2} + \tmp{2}{3} \\ \tmp{3}{1} + \tmp{3}{2} + \tmp{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\newcommand{\tmp}[2]{ V^{#2} U^{#2} \frac{H_{#2}}{H_{#1} H_{#1}} \pder{H_{#2}}{X^{#1}} } \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} - \tmp{1}{1} - \tmp{1}{2} - \tmp{1}{3} \\ - \tmp{2}{1} - \tmp{2}{2} - \tmp{2}{3} \\ - \tmp{3}{1} - \tmp{3}{2} - \tmp{3}{3} \end{pmatrix}.\end{split}\]

Example

Cylindrical coordinates

The sum of

\[\vec{E}_1 \left( \pder{U^1}{t} + V^1 \pder{U^1}{X^1} + V^2 \pder{U^1}{X^2} + V^3 \pder{U^1}{X^3} - V^2 U^2 X^1 \right),\]
\[\vec{E}_2 \left( \pder{U^2}{t} + V^1 \pder{U^2}{X^1} + V^2 \pder{U^2}{X^2} + V^3 \pder{U^2}{X^3} + \frac{V^1 U^2}{X^1} + \frac{V^2 U^1}{X^1} \right),\]
\[\vec{E}_3 \left( \pder{U^3}{t} + V^1 \pder{U^3}{X^1} + V^2 \pder{U^3}{X^2} + V^3 \pder{U^3}{X^3} \right).\]

Rectilinear coordinates

The sum of

\[\vec{E}_1 \left( \pder{U^1}{t} + V^1 \pder{U^1}{X^1} + V^2 \pder{U^1}{X^2} + V^3 \pder{U^1}{X^3} + V^1 U^1 \frac{1}{H_1} \pder{H_1}{X^1} \right),\]
\[\vec{E}_2 \left( \pder{U^2}{t} + V^1 \pder{U^2}{X^1} + V^2 \pder{U^2}{X^2} + V^3 \pder{U^2}{X^3} + V^2 U^2 \frac{1}{H_2} \pder{H_2}{X^2} \right),\]
\[\vec{E}_3 \left( \pder{U^3}{t} + V^1 \pder{U^3}{X^1} + V^2 \pder{U^3}{X^2} + V^3 \pder{U^3}{X^3} + V^3 U^3 \frac{1}{H_3} \pder{H_3}{X^3} \right).\]

Application

The sum of

\[\vec{E}_1 \left( \pder{U^1}{t} + V^1 \pder{U^1}{X^1} + V^2 \pder{U^1}{X^2} + V^3 \pder{U^1}{X^3} + V^1 U^1 \frac{1}{H_1} \pder{H_1}{X^1} - V^2 U^2 \frac{H_2}{H_1 H_1} \pder{H_2}{X^1} \right),\]
\[\vec{E}_2 \left( \pder{U^2}{t} + V^1 \pder{U^2}{X^1} + V^2 \pder{U^2}{X^2} + V^3 \pder{U^2}{X^3} + V^1 U^2 \frac{1}{H_2} \pder{H_2}{X^1} + V^2 U^1 \frac{1}{H_2} \pder{H_2}{X^1} \right),\]
\[\vec{E}_3 \left( \pder{U^3}{t} + V^1 \pder{U^3}{X^1} + V^2 \pder{U^3}{X^2} + V^3 \pder{U^3}{X^3} \right).\]