Normalised component

Description

The divergence of the velocity vector reads

\[\left( \sum_j \frac{1}{H_j} \vec{\hat{E}}_j \pder{}{X^j} \right) \cdot \left( \sum_i \vec{\hat{E}}_i \hat{U}^i \right) = \sum_{ij} \frac{1}{H_j} \vec{\hat{E}}_j \cdot \pder{\vec{\hat{E}}_i}{X^j} \hat{U}^i + \sum_{ij} \frac{1}{H_j} \vec{\hat{E}}_j \cdot \vec{\hat{E}}_i \pder{\hat{U}^i}{X^j},\]

which is

\[\sum_i \frac{1}{H_i} \pder{\hat{U}^i}{X^i} + \sum_{ij} \frac{1}{H_i} \frac{1}{H_j} \pder{H_j}{X^i} \hat{U}^i - \sum_i \frac{1}{H_i} \frac{1}{H_i} \pder{H_i}{X^i} \hat{U}^i.\]

Writing down explicitly would be helpful to find the resulting relation:

\[\frac{1}{J} \sum_i \pder{}{X^i} \left( \frac{J}{H_i} \hat{U}^i \right).\]

Example

In cylindrical coordinates, I have

\[\frac{1}{X^1} \pder{X^1 U^1}{X^1} + \frac{1}{X^1} \pder{U^2}{X^2} + \pder{U^3}{X^3}.\]