Contravariant component

Description

The divergence of the velocity vector reads

\[\left( \sum_j \vec{E}^j \pder{}{X^j} \right) \cdot \left( \sum_i \vec{E}_i U^i \right) = \sum_{ij} \vec{E}^j \cdot \pder{\vec{E}_i}{X^j} U^i + \sum_{ij} \vec{E}^j \cdot \vec{E}_i \pder{U^i}{X^j}.\]

The first term leads to

\[\begin{split}\sum_{ijk} \left( \vec{E}^j \cdot \vec{E}_k = \delta_k^j \right) \Gamma_{ij}^k U^i & = \sum_{ij} \Gamma_{ij}^j U^i \\ & = \frac{1}{J} \sum_i \pder{J}{X^i} U^i,\end{split}\]

where the relation

\[\sumofchristoffel\]

is used.

The second term is

\[\begin{split}\sum_{ij} \delta_i^j \pder{U^i}{X^j} & = \sum_i \pder{U^i}{X^i} \\ & = \frac{1}{J} \sum_i J \pder{U^i}{X^i}.\end{split}\]

As a consequence, the sum yields

\[\frac{1}{J} \sum_i \pder{}{X^i} \left( J U^i \right).\]

Example

Cylindrical coordinates

\[\frac{1}{X^1} \pder{X^1 U^1}{X^1} + \pder{U^2}{X^2} + \pder{U^3}{X^3}.\]

Rectilinear coordinates

\[\frac{1}{J} \pder{ J U^1 }{ X^1 } + \frac{1}{J} \pder{ J U^2 }{ X^2 } + \frac{1}{J} \pder{ J U^3 }{ X^3 }.\]