Normalised basis

Description

The divergence of a second-order tensor reads

\[\left( \sum_k \frac{1}{H_k} \vec{\hat{E}}_k \pder{}{X^k} \right) \cdot \left\{ \sum_{ij} \left( \vec{\hat{E}}_j \otimes \vec{\hat{E}}_i \right) \hat{S}^{ij} \right\},\]

which has the following three components.

The first one is

\[\sum_{ijk} \left( \vec{\hat{E}}_k \cdot \pder{\vec{\hat{E}}_j}{X^k} \right) \frac{1}{H_k} \vec{\hat{E}}_i \hat{S}^{ij}.\]

By using the relation:

\[\dehatdx{j}{k}{l},\]

this leads to

\[\begin{split}& \sum_{ijk} \left( \vec{\hat{E}}_k \cdot \frac{1}{H_j} \pder{H_k}{X^j} \vec{\hat{E}}_k - \vec{\hat{E}}_k \cdot \sum_l \delta_{jk} \frac{1}{H_l} \pder{H_j}{X^l} \vec{\hat{E}}_l \right) \frac{1}{H_k} \vec{\hat{E}}_i \hat{S}^{ij} \\ = & \sum_{ijk} \vec{\hat{E}}_i \frac{1}{H_j} \frac{1}{H_k} \pder{H_k}{X^j} \hat{S}^{ij} - \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_j} \frac{1}{H_j} \pder{H_j}{X^j} \hat{S}^{ij} \\ = & \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_j} \frac{1}{J} \pder{J}{X^j} \hat{S}^{ij} - \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_j} \frac{1}{H_j} \pder{H_j}{X^j} \hat{S}^{ij},\end{split}\]

where the relation:

\[\sumofchristoffel\]

is adopted.

The second one is

\[\begin{split}& \sum_{ijk} \left( \vec{\hat{E}}_k \cdot \vec{\hat{E}}_j = \delta_{kj} \right) \frac{1}{H_k} \pder{\vec{\hat{E}}_i}{X^k} \hat{S}^{ij} \\ = & \sum_{ij} \frac{1}{H_j} \pder{\vec{\hat{E}}_i}{X^j} \hat{S}^{ij}.\end{split}\]

By using the relation:

\[\dehatdx{i}{j}{k},\]

this leads to

\[\begin{split}& \sum_{ij} \frac{1}{H_j} \frac{1}{H_i} \pder{H_j}{X^i} \vec{\hat{E}}_j \hat{S}^{ij} - \sum_{ijk} \frac{1}{H_j} \delta_{ij} \frac{1}{H_k} \pder{H_i}{X^k} \vec{\hat{E}}_k \hat{S}^{ij} \\ = & \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_i} \frac{1}{H_j} \pder{H_i}{X^j} \hat{S}^{ji} - \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_i} \frac{1}{H_j} \pder{H_j}{X^i} \hat{S}^{jj}.\end{split}\]

The third one is

\[\begin{split}& \sum_{ijk} \left( \vec{\hat{E}}_k \cdot \vec{\hat{E}}_j = \delta_{kj} \right) \frac{1}{H_k} \vec{\hat{E}}_i \pder{\hat{S}^{ij}}{X^k} \\ = & \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_j} \pder{\hat{S}^{ij}}{X^j}.\end{split}\]

The sum of the whole elements yields

\[\sum_{ij} \vec{\hat{E}}_i \frac{1}{H_j} \frac{1}{J} \pder{ J \hat{S}^{ij} }{ X^j } - \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_j} \frac{1}{H_j} \pder{H_j}{X^j} \hat{S}^{ij} + \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_i} \frac{1}{H_j} \pder{H_i}{X^j} \hat{S}^{ji} - \sum_{ij} \vec{\hat{E}}_i \frac{1}{H_i} \frac{1}{H_j} \pder{H_j}{X^i} \hat{S}^{jj},\]

where the part of the first element and the last element were unified to yield the Jacobian relation.

Furthermore, the first two terms can be unified to yield

\[\newcommand{\tmpa}[2]{ \frac{1}{J} \pder{}{X^#2} \left( \frac{J}{H_#2} \hat{S}^{#1 #2} \right) } \newcommand{\tmpb}[2]{ \frac{1}{H_#1} \frac{1}{H_#2} \pder{H_#1}{X^#2} \hat{S}^{#2 #1} } \newcommand{\tmpc}[2]{ \frac{1}{H_#1} \frac{1}{H_#2} \pder{H_#2}{X^#1} \hat{S}^{#2 #2} } \sum_{ij} \vec{\hat{E}}_i \tmpa{i}{j} + \sum_{ij} \vec{\hat{E}}_i \tmpb{i}{j} - \sum_{ij} \vec{\hat{E}}_i \tmpc{i}{j}.\]

Explicitly, the sum of

\[\begin{split}\begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} \tmpa{1}{1} + \tmpa{1}{2} + \tmpa{1}{3} \\ \tmpa{2}{1} + \tmpa{2}{2} + \tmpa{2}{3} \\ \tmpa{3}{1} + \tmpa{3}{2} + \tmpa{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} \tmpb{1}{1} + \tmpb{1}{2} + \tmpb{1}{3} \\ \tmpb{2}{1} + \tmpb{2}{2} + \tmpb{2}{3} \\ \tmpb{3}{1} + \tmpb{3}{2} + \tmpb{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix} \vec{\hat{E}}_1 & \vec{\hat{E}}_2 & \vec{\hat{E}}_3 \end{pmatrix} \begin{pmatrix} - \tmpc{1}{1} - \tmpc{1}{2} - \tmpc{1}{3} \\ - \tmpc{2}{1} - \tmpc{2}{2} - \tmpc{2}{3} \\ - \tmpc{3}{1} - \tmpc{3}{2} - \tmpc{3}{3} \end{pmatrix}.\end{split}\]

Example

The sum of

\[\vec{\hat{E}}_1 \left( \frac{1}{X^1} \pder{X^1 \hat{S}^{1 1}}{X^1} + \frac{1}{X^1} \pder{\hat{S}^{1 2}}{X^2} + \pder{\hat{S}^{1 3}}{X^3} - \frac{ \hat{S}^{2 2} }{ X^1 } \right),\]
\[\vec{\hat{E}}_2 \left( \frac{1}{X^1} \pder{X^1 \hat{S}^{2 1}}{X^1} + \frac{1}{X^1} \pder{\hat{S}^{2 2}}{X^2} + \pder{\hat{S}^{2 3}}{X^3} + \frac{ \hat{S}^{1 2} }{ X^1 } \right),\]
\[\vec{\hat{E}}_3 \left( \frac{1}{X^1} \pder{X^1 \hat{S}^{3 1}}{X^1} + \frac{1}{X^1} \pder{\hat{S}^{3 2}}{X^2} + \pder{\hat{S}^{3 3}}{X^3} \right).\]