Covariant basis

Description

The divergence of a second-order tensor reads

\[\left( \sum_k \vec{E}^k \pder{}{X^k} \right) \cdot \left\{ \sum_{ij} \left( \vec{E}_j \otimes \vec{E}_i \right) S^{ij} \right\},\]

which has three components:

\[\begin{split}\sum_{ijk} \left( \vec{E}^k \cdot \pder{\vec{E}_j}{X^k} \right) \vec{E}_i S^{ij} = & \sum_{ijkl} \left( \vec{E}^k \cdot \vec{E}_l = \delta_l^k \right) \vec{E}_i \Gamma_{jk}^l S^{ij} \\ = & \sum_{ijk} \vec{E}_i \Gamma_{jk}^k S^{ij} \\ = & \sum_{ij} \vec{E}_i \frac{1}{J} \pder{J}{X^j} S^{ij},\end{split}\]
\[\begin{split}\sum_{ijk} \left( \vec{E}^k \cdot \vec{E}_j = \delta_j^k \right) \pder{\vec{E}_i}{X^k} S^{ij} = & \sum_{ij} \pder{\vec{E}_i}{X^j} S^{ij} \\ = & \sum_{ij} \left( \frac{1}{H_i} \pder{H_i}{X^j} \vec{E}_i + \frac{1}{H_j} \pder{H_j}{X^i} \vec{E}_j - \sum_k \delta_{ij} \frac{H_j}{2 H_k H_k} \pder{H_i}{X^k} \vec{E}_k - \sum_k \delta_{ij} \frac{H_i}{2 H_k H_k} \pder{H_j}{X^k} \vec{E}_k \right) S^{ij} \\ = & \newcommand{\tmpa}[2]{ \frac{1}{H_{#1}} \pder{H_{#1}}{X^{#2}} \left( S^{#1 #2} + S^{#2 #1} \right) } \newcommand{\tmpb}[2]{ \frac{H_{#2}}{H_{#1} H_{#1}} \pder{H_{#2}}{X^{#1}} S^{#2 #2} } \sum_{ij} \vec{E}_i \tmpa{i}{j} - \sum_{ij} \vec{E}_i \tmpb{i}{j},\end{split}\]
\[\sum_{ijk} \left( \vec{E}^k \cdot \vec{E}_j = \delta_j^k \right) \vec{E}_i \pder{S^{ij}}{X^k} = \sum_{ij} \vec{E}_i \pder{S^{ij}}{X^j}.\]

The sum of the first and the last elements yields

\[\newcommand{\tmpc}[2]{ \frac{1}{J} \pder{}{X^{#2}} \left( J S^{#1 #2} \right) } \sum_{ij} \vec{E}_i \tmpc{i}{j}.\]

Explicitly, the sum of

\[\begin{split}\begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpc{1}{1} + \tmpc{1}{2} + \tmpc{1}{3} \\ \tmpc{2}{1} + \tmpc{2}{2} + \tmpc{2}{3} \\ \tmpc{3}{1} + \tmpc{3}{2} + \tmpc{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpa{1}{1} + \tmpa{1}{2} + \tmpa{1}{3} \\ \tmpa{2}{1} + \tmpa{2}{2} + \tmpa{2}{3} \\ \tmpa{3}{1} + \tmpa{3}{2} + \tmpa{3}{3} \end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} - \tmpb{1}{1} - \tmpb{1}{2} - \tmpb{1}{3} \\ - \tmpb{2}{1} - \tmpb{2}{2} - \tmpb{2}{3} \\ - \tmpb{3}{1} - \tmpb{3}{2} - \tmpb{3}{3} \end{pmatrix}.\end{split}\]

Example

Cylindrical coordinates

The sum of

\[\vec{E}_1 \left( \frac{1}{X^1} \pder{X^1 S^{1 1}}{X^1} + \pder{S^{1 2}}{X^2} + \pder{S^{1 3}}{X^3} - X^1 S^{2 2} \right),\]
\[\vec{E}_2 \left( \frac{1}{X^1} \pder{X^1 S^{2 1}}{X^1} + \pder{S^{2 2}}{X^2} + \pder{S^{2 3}}{X^3} + \frac{ S^{2 1} + S^{1 2} }{ X^1 } \right),\]
\[\vec{E}_3 \left( \frac{1}{X^1} \pder{X^1 S^{3 1}}{X^1} + \pder{S^{3 2}}{X^2} + \pder{S^{3 3}}{X^3} \right).\]

Rectilinear coordinates

The sum of

\[\vec{E}_1 \left( \frac{1}{J} \pder{}{X^1} \left( J S^{11} \right) + \frac{1}{J} \pder{}{X^2} \left( J S^{12} \right) + \frac{1}{J} \pder{}{X^3} \left( J S^{13} \right) + \frac{1}{H_1} \pder{H_1}{X^1} S^{11} \right),\]
\[\vec{E}_2 \left( \frac{1}{J} \pder{}{X^1} \left( J S^{21} \right) + \frac{1}{J} \pder{}{X^2} \left( J S^{22} \right) + \frac{1}{J} \pder{}{X^3} \left( J S^{23} \right) + \frac{1}{H_2} \pder{H_2}{X^2} S^{22} \right),\]
\[\vec{E}_3 \left( \frac{1}{J} \pder{}{X^1} \left( J S^{31} \right) + \frac{1}{J} \pder{}{X^2} \left( J S^{32} \right) + \frac{1}{J} \pder{}{X^3} \left( J S^{33} \right) + \frac{1}{H_3} \pder{H_3}{X^3} S^{33} \right).\]

Application

The sum of

\[\vec{E}_1 \left( \frac{1}{J} \pder{}{X^1} \left( J S^{11} \right) + \frac{1}{J} \pder{}{X^2} \left( J S^{12} \right) + \frac{1}{J} \pder{}{X^3} \left( J S^{13} \right) + \frac{1}{H_1} \pder{H_1}{X^1} S^{11} - \frac{H_2}{H_1 H_1} \pder{H_2}{X^1} S^{22} \right),\]
\[\vec{E}_2 \left( \frac{1}{J} \pder{}{X^1} \left( J S^{21} \right) + \frac{1}{J} \pder{}{X^2} \left( J S^{22} \right) + \frac{1}{J} \pder{}{X^3} \left( J S^{23} \right) + \frac{1}{H_2} \pder{H_2}{X^1} S^{21} + \frac{1}{H_2} \pder{H_2}{X^1} S^{12} \right),\]
\[\vec{E}_3 \left( \frac{1}{J} \pder{}{X^1} \left( J S^{31} \right) + \frac{1}{J} \pder{}{X^2} \left( J S^{32} \right) + \frac{1}{J} \pder{}{X^3} \left( J S^{33} \right) \right).\]