Covariant basis¶
Description¶
Velocity-gradient tensor¶
The gradient of a velocity vector is
\[\left(
\sum_j
\vec{E}^j
\pder{}{X^j}
\right)
\otimes
\left(
\sum_i
\vec{E}_i
U^i
\right)
=
\sum_{ij}
\left(
\vec{E}^j
\otimes
\pder{\vec{E}_i}{X^j}
\right)
U^i
+
\sum_{ij}
\left(
\vec{E}^j
\otimes
\vec{E}_i
\right)
\pder{U^i}{X^j}.\]
By using the changes of the basis vectors:
\[\dedx{i}{j}{k},\]
I find that the vector gradient is given by the sum of the following elements.
\[\newcommand{\tmpa}[2]{
\frac{1}{H_{#2} H_{#2}}
\frac{1}{H_{#1}}
\pder{H_{#1}}{X^{#2}}
U^{#1}
}
\sum_{ij}
\left(
\vec{E}_j
\otimes
\vec{E}_i
\right)
\tmpa{i}{j}.\]
\[\newcommand{\tmpb}[1]{
\frac{1}{H_{#1} H_{#1}}
\sum_k
\frac{1}{H_{#1}}
\pder{H_{#1}}{X^k}
U^k
}
\sum_j
\left(
\vec{E}_j
\otimes
\vec{E}_j
\right)
\frac{1}{H_j H_j}
\frac{1}{H_j}
\sum_k
\pder{H_j}{X^k}
U^k.\]
\[\begin{split}&
-
\sum_{ijk}
\left(
\vec{E}^j
\otimes
\vec{E}_k
\right)
\delta_{ij}
\frac{H_j}{2 H_k H_k}
\pder{H_i}{X^k}
U^i
-
\sum_{ijk}
\left(
\vec{E}^j
\otimes
\vec{E}_k
\right)
\delta_{ij}
\frac{H_i}{2 H_k H_k}
\pder{H_j}{X^k}
U^i \\
=
&
-
\sum_{jk}
\left(
\vec{E}^j
\otimes
\vec{E}_k
\right)
\frac{H_j}{2 H_k H_k}
\pder{H_j}{X^k}
U^j
-
\sum_{ik}
\left(
\vec{E}^i
\otimes
\vec{E}_k
\right)
\frac{H_i}{2 H_k H_k}
\pder{H_i}{X^k}
U^i \\
=
&
-
\sum_{ij}
\left(
\vec{E}_j
\otimes
\vec{E}_i
\right)
\frac{1}{H_j H_j}
\frac{H_j}{H_i H_i}
\pder{H_j}{X^i}
U^j \\
=
&
-
\sum_{ij}
\left(
\vec{E}_j
\otimes
\vec{E}_i
\right)
\tmpa{j}{i}.\end{split}\]
\[\newcommand{\tmpd}[2]{
\frac{1}{H_{#2} H_{#2}}
\pder{U^{#1}}{X^{#2}}
}
\sum_{ij}
\left(
\vec{E}_j
\otimes
\vec{E}_i
\right)
\tmpd{i}{j}.\]
Note that the negative of the third element is the transpose of the first one.
In summary, the velocity gradient is given by the sum of
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\tmpd{1}{1} & \tmpd{2}{1} & \tmpd{3}{1} \\
\tmpd{1}{2} & \tmpd{2}{2} & \tmpd{3}{2} \\
\tmpd{1}{3} & \tmpd{2}{3} & \tmpd{3}{3} \\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\tmpb{1} & 0 & 0 \\
0 & \tmpb{2} & 0 \\
0 & 0 & \tmpb{3} \\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
0 & \tmpa{2}{1} - \tmpa{1}{2} & \tmpa{3}{1} - \tmpa{1}{3} \\
\tmpa{1}{2} - \tmpa{2}{1} & 0 & \tmpa{3}{2} - \tmpa{2}{3} \\
\tmpa{1}{3} - \tmpa{3}{1} & \tmpa{2}{3} - \tmpa{3}{2} & 0 \\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
Strain-rate tensor¶
The strain-rate tensor is defined as the symmetric part of it; namely the sum of
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\tmpd{1}{1} & \frac{1}{2} \tmpd{2}{1} + \frac{1}{2} \tmpd{1}{2} & \frac{1}{2} \tmpd{3}{1} + \frac{1}{2} \tmpd{1}{3} \\
sym. & \tmpd{2}{2} & \frac{1}{2} \tmpd{3}{2} + \frac{1}{2} \tmpd{2}{3} \\
sym. & sym. & \tmpd{3}{3} \\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\tmpb{1} & 0 & 0 \\
sym. & \tmpb{2} & 0 \\
sym. & sym. & \tmpb{3} \\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
Example¶
Cylindrical coordinates¶
Details
The velocity-gradient tensor is the sum of
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\pder{U^1}{X^1}
&
\pder{U^2}{X^1}
&
\pder{U^3}{X^1}
\\
\frac{1}{X^1 X^1}
\pder{U^1}{X^2}
&
\frac{1}{X^1 X^1}
\pder{U^2}{X^2}
&
\frac{1}{X^1 X^1}
\pder{U^3}{X^2}
\\
\pder{U^1}{X^3}
&
\pder{U^2}{X^3}
&
\pder{U^3}{X^3}
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
0
&
0
&
0
\\
0
&
\frac{1}{X^1 X^1}
\frac{U^1}{X^1}
&
0
\\
0
&
0
&
0
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
0
&
\frac{U^2}{X^1}
&
0
\\
-
\frac{U^2}{X^1}
&
0
&
0
\\
0
&
0
&
0
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
The strain-rate tensor is
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\pder{U^1}{X^1}
&
\frac{1}{2}
\pder{U^2}{X^1}
+
\frac{1}{2}
\frac{1}{X^1 X^1}
\pder{U^1}{X^2}
&
\frac{1}{2}
\pder{U^3}{X^1}
+
\frac{1}{2}
\pder{U^1}{X^3}
\\
sym.
&
\frac{1}{X^1 X^1}
\pder{U^2}{X^2}
+
\frac{1}{X^1 X^1}
\frac{U^1}{X^1}
&
\frac{1}{2}
\frac{1}{X^1 X^1}
\pder{U^3}{X^2}
+
\frac{1}{2}
\pder{U^2}{X^3}
\\
sym.
&
sym.
&
\pder{U^3}{X^3}
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
Rectilinear coordinates¶
Details
The velocity-gradient tensor is the sum of
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\frac{1}{H_1 H_1}
\pder{U^1}{X^1}
&
\frac{1}{H_1 H_1}
\pder{U^2}{X^1}
&
\frac{1}{H_1 H_1}
\pder{U^3}{X^1}
\\
\frac{1}{H_2 H_2}
\pder{U^1}{X^2}
&
\frac{1}{H_2 H_2}
\pder{U^2}{X^2}
&
\frac{1}{H_2 H_2}
\pder{U^3}{X^2}
\\
\frac{1}{H_3 H_3}
\pder{U^1}{X^3}
&
\frac{1}{H_3 H_3}
\pder{U^2}{X^3}
&
\frac{1}{H_3 H_3}
\pder{U^3}{X^3}
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\frac{1}{H_1 H_1}
\sum_k
\frac{1}{H_1}
\pder{H_1}{X^k}
U^k
&
0
&
0
\\
0
&
\frac{1}{H_2 H_2}
\sum_k
\frac{1}{H_2}
\pder{H_2}{X^k}
U^k
&
0
\\
0
&
0
&
\frac{1}{H_3 H_3}
\sum_k
\frac{1}{H_3}
\pder{H_3}{X^k}
U^k
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
The strain-rate tensor is
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\frac{1}{H_1 H_1}
\pder{U^1}{X^1}
+
\frac{1}{H_1 H_1}
\sum_k
\frac{1}{H_1}
\pder{H_1}{X^k}
U^k
&
\frac{1}{2}
\frac{1}{H_1 H_1}
\pder{U^2}{X^1}
+
\frac{1}{2}
\frac{1}{H_1 H_1}
\pder{U^2}{X^1}
&
\frac{1}{2}
\frac{1}{H_1 H_1}
\pder{U^3}{X^1}
+
\frac{1}{2}
\frac{1}{H_3 H_3}
\pder{U^1}{X^3}
\\
sym.
&
\frac{1}{H_2 H_2}
\pder{U^2}{X^2}
+
\frac{1}{H_2 H_2}
\sum_k
\frac{1}{H_2}
\pder{H_2}{X^k}
U^k
&
\frac{1}{2}
\frac{1}{H_2 H_2}
\pder{U^3}{X^2}
+
\frac{1}{2}
\frac{1}{H_3 H_3}
\pder{U^2}{X^3}
\\
sym.
&
sym.
&
\frac{1}{H_3 H_3}
\pder{U^3}{X^3}
+
\frac{1}{H_3 H_3}
\sum_k
\frac{1}{H_3}
\pder{H_3}{X^k}
U^k
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
Application¶
Details
The velocity-gradient tensor is the sum of
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\tmpd{1}{1}
&
\tmpd{2}{1}
&
\tmpd{3}{1}
\\
\tmpd{1}{2}
&
\tmpd{2}{2}
&
\tmpd{3}{2}
\\
\tmpd{1}{3}
&
\tmpd{2}{3}
&
\tmpd{3}{3}
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
0
&
0
&
0
\\
0
&
\frac{1}{H_2 H_2} \frac{1}{H_2} \pder{H_2}{X^1} U^1
&
0
\\
0
&
0
&
0
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix},\end{split}\]
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
0
&
\tmpa{2}{1}
&
0
\\
-
\tmpa{2}{1}
&
0
&
0
\\
0
&
0
&
0
\\
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]
The strain-rate tensor is
\[\begin{split}\begin{pmatrix}
\vec{E}_1
&
\vec{E}_2
&
\vec{E}_3
\end{pmatrix}
\begin{pmatrix}
\frac{1}{H_1 H_1}
\pder{U^1}{X^1}
+
\frac{1}{H_1 H_1}
\frac{1}{H_1}
\pder{H_1}{X^1}
U^1
&
\frac{1}{2}
\frac{1}{H_1 H_1}
\pder{U^2}{X^1}
+
\frac{1}{2}
\frac{1}{H_1 H_1}
\pder{U^2}{X^1}
&
\frac{1}{2}
\frac{1}{H_1 H_1}
\pder{U^3}{X^1}
+
\frac{1}{2}
\frac{1}{H_3 H_3}
\pder{U^1}{X^3}
\\
sym.
&
\frac{1}{H_2 H_2}
\pder{U^2}{X^2}
+
\frac{1}{H_2 H_2}
\frac{1}{H_2}
\pder{H_2}{X^1}
U^1
&
\frac{1}{2}
\frac{1}{H_2 H_2}
\pder{U^3}{X^2}
+
\frac{1}{2}
\frac{1}{H_3 H_3}
\pder{U^2}{X^3}
\\
sym.
&
sym.
&
\frac{1}{H_3 H_3}
\pder{U^3}{X^3}
\end{pmatrix}
\begin{pmatrix}
\vec{E}_1
\\
\vec{E}_2
\\
\vec{E}_3
\end{pmatrix}.\end{split}\]