.. _equation: ######## Equation ######## .. include:: /reference/reference.txt ****************** Boundary condition ****************** We focus on Cartesian (:math:`\vx,\vy,\vz`) and cylindrical (:math:`\vr,\vt,\vz`) domains which satisfy the following conditions. * :math:`\vx, \vr` directions are wall-bounded and impermeable condition is imposed. * :math:`\vy, \vt` directions are stream-wise, to which the walls may move with constant speeds over time and periodic boundary condition is imposed. * :math:`\vz` direction is span-wise, to which the walls do not move and periodic boundary condition is imposed. ****** Metric ****** For simplicity and generality, the governing equations are written in a general rectilinear coordinate system :math:`\gcs{i}` with normalised components :math:`\vel{i}` (c.f., |MORINISHI2004|). :math:`\sfact{i}` denote scale factors and its product is the Jacobian determinant :math:`J` due to the orthogonality. .. image:: ./figures/result.png :width: 80% :align: center There are several terms which are characteristic of cylindrical coordinates. In Cartesian coordinates, these additional terms lead to zero since :math:`\sfact{2}, \sfact{3}` do not change in :math:`\gcs{1}`. Thus all equations, their numerical descriptions, and implementations can be unified. See :ref:`e.g., the appendix ` for the derivations. ******************* Shear-stress tensor ******************* We define a second-order tensor representing the gradient of velocity vector: .. math:: \sum_i \sum_j \vec{e}_i \otimes \vec{e}_j \vgt{i}{j}, where the components :math:`\vgt{i}{j}` are .. math:: \begin{pmatrix} \vgt{1}{1} & \vgt{2}{1} & \vgt{3}{1} \\ \vgt{1}{2} & \vgt{2}{2} & \vgt{3}{2} \\ \vgt{1}{3} & \vgt{2}{3} & \vgt{3}{3} \\ \end{pmatrix} = \begin{pmatrix} \frac{1}{\sfact{1}} \pder{\vel{1}}{\gcs{1}} & \frac{1}{\sfact{2}} \pder{\vel{1}}{\gcs{2}} - \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \right) \vel{2} & \frac{1}{\sfact{3}} \pder{\vel{1}}{\gcs{3}} \\ \frac{1}{\sfact{1}} \pder{\vel{2}}{\gcs{1}} & \frac{1}{\sfact{2}} \pder{\vel{2}}{\gcs{2}} + \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \right) \vel{1} & \frac{1}{\sfact{3}} \pder{\vel{2}}{\gcs{3}} \\ \frac{1}{\sfact{1}} \pder{\vel{3}}{\gcs{1}} & \frac{1}{\sfact{2}} \pder{\vel{3}}{\gcs{2}} & \frac{1}{\sfact{3}} \pder{\vel{3}}{\gcs{3}} \end{pmatrix}. The shear-stress tensor for Newtonian liquids is defined using the symmetric part of :math:`\vgt{i}{j}`: .. math:: \sst{i}{j} \equiv \mu \vgt{i}{j} + \mu \vgt{j}{i}. Viscous contribution on the momentum balance is given by the divergence of this tensor: .. math:: \pder{}{x_j} \left( \mu \vgt{i}{j} + \mu \vgt{j}{i} \right). Note that we assume :math:`\mu` is constant in this project to obtain .. math:: \mu \pder{}{x_j} \left( \vgt{j}{i} + \vgt{i}{j} \right). Hereafter we use kinematic viscosity :math:`\nu \equiv \mu / \rho`, since we assume the density :math:`\rho` is constant as well. **************************** Incompressibility constraint **************************** .. math:: \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \vel{1} \right) + \frac{1}{J} \pder{}{\gcs{2}} \left( \frac{J}{\sfact{2}} \vel{2} \right) + \frac{1}{J} \pder{}{\gcs{3}} \left( \frac{J}{\sfact{3}} \vel{3} \right) = 0. **************** Momentum balance **************** .. math:: \momtemp{1} = & \momadv{1}{1} \momadv{2}{1} \momadv{3}{1} & \momadvx & \mompre{1} & \momdif{1}{1} \momdif{2}{1} \momdif{3}{1} & \momdifx & + a_1, .. math:: \momtemp{2} = & \momadv{1}{2} \momadv{2}{2} \momadv{3}{2} & \momadvy & \mompre{2} & \momdif{1}{2} \momdif{2}{2} \momdif{3}{2} & \momdify, .. math:: \momtemp{3} = & \momadv{1}{3} \momadv{2}{3} \momadv{3}{3} & \mompre{3} & \momdif{1}{3} \momdif{2}{3} \momdif{3}{3}. Note that :math:`a_1` is the wall-normal acceleration term, which is to reflect the effects of scalar on the momentum balance (e.g., buoyancy force under Boussinesq approximation for Rayleigh-BĂ©nard flows). **************** Scalar transport **************** .. math:: \scalartemp = & \scalaradv{1} \scalaradv{2} \scalaradv{3} & \scalardif{1} \scalardif{2} \scalardif{3}, where :math:`\kappa` is the diffusivity of the scalar. ****************** Quadratic quantity ****************** We consider the quadratic quantities with respect to the velocity field: .. math:: \quad{i} \equiv \frac{1}{2} \vel{i} \vel{i} \,\, \left( \text{ No summation over } \, i \right), which are obtained by multiplying each momentum balance by the corresponding velocity. By volume-integrating the relations inside the whole domain and summing them up, we obtain the relation of the net kinetic energy: .. math:: \pder{}{t} \int \int \int \left( \quad{1} + \quad{2} + \quad{3} \right) J d\gcs{1} d\gcs{2} d\gcs{3} = \left( \text{input} \right) + \left( \text{transport} \right) + \left( \text{dissipation} \right). Input is the energy input due to the acceleration force and leads to .. math:: \int \int \int J \vel{1} a_1 d\gcs{1} d\gcs{2} d\gcs{3}. There are two more terms on the right-hand side, which originate from the diffusive terms in the momentum balance relations. The advective and pressure-gradient contributions on the global energy balance vanish due to the prescribed boundary conditions. Here the *transport* is the net kinetic energy going through the walls which attributes to the wall-normal diffusive term in the stream-wise momentum equation: .. math:: - \int \int \vat{ \left( \frac{J}{\sfact{1}} \vel{2} \sst{1}{2} \right) }{\text{Negative wall}} d\gcs{2} d\gcs{3} + \int \int \vat{ \left( \frac{J}{\sfact{1}} \vel{2} \sst{1}{2} \right) }{\text{Positive wall}} d\gcs{2} d\gcs{3}, while the *dissipation* is handled by the other terms .. math:: & - \int \int \int \left[ \begin{aligned} & + \frac{1}{\sfact{1}} \pder{\vel{1}}{\gcs{1}} \sst{1}{1} + \left\{ \frac{1}{\sfact{2}} \pder{\vel{1}}{\gcs{2}} - \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \right) \vel{2} \right\} \sst{2}{1} + \frac{1}{\sfact{3}} \pder{\vel{1}}{\gcs{3}} \sst{3}{1} \\ & + \frac{1}{\sfact{1}} \pder{\vel{2}}{\gcs{1}} \sst{1}{2} + \left\{ \frac{1}{\sfact{2}} \pder{\vel{2}}{\gcs{2}} + \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \right) \vel{1} \right\} \sst{2}{2} + \frac{1}{\sfact{3}} \pder{\vel{2}}{\gcs{3}} \sst{3}{2} \\ & + \frac{1}{\sfact{1}} \pder{\vel{3}}{\gcs{1}} \sst{1}{3} + \frac{1}{\sfact{2}} \pder{\vel{3}}{\gcs{2}} \sst{2}{3} + \frac{1}{\sfact{3}} \pder{\vel{3}}{\gcs{3}} \sst{3}{3} \end{aligned} \right] J d\gcs{1} d\gcs{2} d\gcs{3} \\ & = \\ & - \int \int \int \left( \begin{aligned} & + \vgt{1}{1} \sst{1}{1} + \vgt{2}{1} \sst{2}{1} + \vgt{3}{1} \sst{3}{1} \\ & + \vgt{1}{2} \sst{1}{2} + \vgt{2}{2} \sst{2}{2} + \vgt{3}{2} \sst{3}{2} \\ & + \vgt{1}{3} \sst{1}{3} + \vgt{2}{3} \sst{2}{3} + \vgt{3}{3} \sst{3}{3} \end{aligned} \right) J d\gcs{1} d\gcs{2} d\gcs{3}. Similarly we consider a quadratic quantity with respect to the scalar field: .. math:: q \equiv \frac{1}{2} T T, following .. math:: \pder{}{t} \int \int \int J d\gcs{1} d\gcs{2} d\gcs{3} = \left( \text{transport} \right) + \left( \text{dissipation} \right). Again the *transport* is the net scalar quadratic quantity going through the walls: .. math:: - \int \int \vat{ \kappa \left( \frac{J}{\sfact{1}} T \frac{1}{\sfact{1}} \pder{T}{\gcs{1}} \right) }{\text{Negative wall}} d\gcs{2} d\gcs{3} + \int \int \vat{ \kappa \left( \frac{J}{\sfact{1}} T \frac{1}{\sfact{1}} \pder{T}{\gcs{1}} \right) }{\text{Positive wall}} d\gcs{2} d\gcs{3}, while the *dissipation* is .. math:: - \int \int \int \left( \kappa \frac{1}{\sfact{1}} \pder{T}{\gcs{1}} \frac{1}{\sfact{1}} \pder{T}{\gcs{1}} + \kappa \frac{1}{\sfact{2}} \pder{T}{\gcs{2}} \frac{1}{\sfact{2}} \pder{T}{\gcs{2}} + \kappa \frac{1}{\sfact{3}} \pder{T}{\gcs{3}} \frac{1}{\sfact{3}} \pder{T}{\gcs{3}} \right) J d\gcs{1} d\gcs{2} d\gcs{3}.