########### Application ########### I consider the cylindrical coordinates .. math:: & \xi^1 \equiv \sqrt{x^1 x^1 + x^2 x^2}, & \xi^2 \equiv \tan^{-1} \left( \frac{x^2}{x^1} \right), & \xi^3 \equiv x^3, which are further stretched in a rectilinear way: .. math:: & X^1 \equiv f_1 \left( \xi^1 \right), & X^2 \equiv f_2 \left( \xi^2 \right), & X^3 \equiv f_3 \left( \xi^3 \right). Note that :math:`f_1` is an arbitrary function and can be non-linear, while the other two functions :math:`f_2, f_3` are linear. Adopting the chain rule: .. math:: \pder{x^i}{X^j} = \sum_k \pder{x^i}{\xi^k} \pder{\xi^k}{X^j} yields the transformation matrix: .. math:: \begin{pmatrix} \pder{x^1}{X^1} & \pder{x^1}{X^2} & \pder{x^1}{X^3} \\ \pder{x^2}{X^1} & \pder{x^2}{X^2} & \pder{x^2}{X^3} \\ \pder{x^3}{X^1} & \pder{x^3}{X^2} & \pder{x^3}{X^3} \\ \end{pmatrix} & = \begin{pmatrix} \pder{x^1}{\xi^1} & \pder{x^1}{\xi^2} & \pder{x^1}{\xi^3} \\ \pder{x^2}{\xi^1} & \pder{x^2}{\xi^2} & \pder{x^2}{\xi^3} \\ \pder{x^3}{\xi^1} & \pder{x^3}{\xi^2} & \pder{x^3}{\xi^3} \\ \end{pmatrix} \begin{pmatrix} \pder{\xi^1}{X^1} & \pder{\xi^1}{X^2} & \pder{\xi^1}{X^3} \\ \pder{\xi^2}{X^1} & \pder{\xi^2}{X^2} & \pder{\xi^2}{X^3} \\ \pder{\xi^3}{X^1} & \pder{\xi^3}{X^2} & \pder{\xi^3}{X^3} \\ \end{pmatrix} \\ & = \begin{pmatrix} \cos \xi^2 & - \xi^1 \sin \xi^2 & 0 \\ \sin \xi^2 & \xi^1 \cos \xi^2 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} \pder{\xi^1}{X^1} & 0 & 0 \\ 0 & \pder{\xi^2}{X^2} & 0 \\ 0 & 0 & \pder{\xi^3}{X^3} \\ \end{pmatrix} \\ & = \begin{pmatrix} \pder{\xi^1}{X^1} \cos \xi^2 & - \pder{\xi^2}{X^2} \xi^1 \sin \xi^2 & 0 \\ \pder{\xi^1}{X^1} \sin \xi^2 & \pder{\xi^2}{X^2} \xi^1 \cos \xi^2 & 0 \\ 0 & 0 & \pder{\xi^3}{X^3} \\ \end{pmatrix}. Note that, because of the linearity of :math:`f_2` and :math:`f_3`, :math:`\pder{\xi^2}{X^2}` and :math:`\pder{\xi^3}{X^3}` (specifically :math:`\Delta \theta` and :math:`\Delta z`, respectively) are both constant in space. :math:`\pder{\xi^1}{X^1}` (:math:`\Delta r`), on the other hand, can vary in :math:`X^1`. The relation of the basis vectors are .. math:: & \vec{E}_1 = \vec{e}_1 \pder{\xi^1}{X^1} \cos \xi^2 + \vec{e}_2 \pder{\xi^1}{X^1} \sin \xi^2, & \vec{E}_2 = - \vec{e}_1 \pder{\xi^2}{X^2} \xi^1 \sin \xi^2 + \vec{e}_2 \pder{\xi^2}{X^2} \xi^1 \cos \xi^2, & \vec{E}_3 = \vec{e}_3 \pder{\xi^3}{X^3}. The scale factors are .. math:: & H_1 = \sqrt{ \vec{E}_1 \cdot \vec{E}_1 } = \pder{\xi^1}{X^1} \left( = \Delta r \right), & H_2 = \sqrt{ \vec{E}_2 \cdot \vec{E}_2 } = \pder{\xi^2}{X^2} \xi^1 \left( = r \Delta \theta \right), & H_3 = \sqrt{ \vec{E}_3 \cdot \vec{E}_3 } = \pder{\xi^3}{X^3} \left( = \Delta z \right), and thus the Jacobian determinant leads to .. math:: J = \xi^1 \pder{\xi^1}{X^1} \pder{\xi^2}{X^2} \pder{\xi^3}{X^3} \left( = r \Delta r \Delta \theta \Delta z \right). The spatial derivatives of :math:`H_i` are .. math:: \begin{pmatrix} \pder{H_1}{X^1} & \pder{H_2}{X^1} & \pder{H_3}{X^1} \\ \pder{H_1}{X^2} & \pder{H_2}{X^2} & \pder{H_3}{X^2} \\ \pder{H_1}{X^3} & \pder{H_2}{X^3} & \pder{H_3}{X^3} \\ \end{pmatrix} = \begin{pmatrix} \pder{H_1}{X^1} & \pder{H_2}{X^1} & 0 \\ 0 & \pder{H_2}{X^2} & 0 \\ 0 & 0 & \pder{H_3}{X^3} \\ \end{pmatrix}, which can be further simplified as .. math:: \begin{pmatrix} \pder{H_1}{X^1} & \pder{H_2}{X^1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}, by utilising the linearity of the mapping functions :math:`f_2, f_3`.