############### Covariant basis ############### *********** Description *********** ======================== Velocity-gradient tensor ======================== The gradient of a velocity vector is .. math:: \left( \sum_j \vec{E}^j \pder{}{X^j} \right) \otimes \left( \sum_i \vec{E}_i U^i \right) = \sum_{ij} \left( \vec{E}^j \otimes \pder{\vec{E}_i}{X^j} \right) U^i + \sum_{ij} \left( \vec{E}^j \otimes \vec{E}_i \right) \pder{U^i}{X^j}. By using :ref:`the changes of the basis vectors `: .. math:: \dedx{i}{j}{k}, I find that the vector gradient is given by the sum of the following elements. .. math:: \newcommand{\tmpa}[2]{ \frac{1}{H_{#2} H_{#2}} \frac{1}{H_{#1}} \pder{H_{#1}}{X^{#2}} U^{#1} } \sum_{ij} \left( \vec{E}_j \otimes \vec{E}_i \right) \tmpa{i}{j}. .. math:: \newcommand{\tmpb}[1]{ \frac{1}{H_{#1} H_{#1}} \sum_k \frac{1}{H_{#1}} \pder{H_{#1}}{X^k} U^k } \sum_j \left( \vec{E}_j \otimes \vec{E}_j \right) \frac{1}{H_j H_j} \frac{1}{H_j} \sum_k \pder{H_j}{X^k} U^k. .. math:: & - \sum_{ijk} \left( \vec{E}^j \otimes \vec{E}_k \right) \delta_{ij} \frac{H_j}{2 H_k H_k} \pder{H_i}{X^k} U^i - \sum_{ijk} \left( \vec{E}^j \otimes \vec{E}_k \right) \delta_{ij} \frac{H_i}{2 H_k H_k} \pder{H_j}{X^k} U^i \\ = & - \sum_{jk} \left( \vec{E}^j \otimes \vec{E}_k \right) \frac{H_j}{2 H_k H_k} \pder{H_j}{X^k} U^j - \sum_{ik} \left( \vec{E}^i \otimes \vec{E}_k \right) \frac{H_i}{2 H_k H_k} \pder{H_i}{X^k} U^i \\ = & - \sum_{ij} \left( \vec{E}_j \otimes \vec{E}_i \right) \frac{1}{H_j H_j} \frac{H_j}{H_i H_i} \pder{H_j}{X^i} U^j \\ = & - \sum_{ij} \left( \vec{E}_j \otimes \vec{E}_i \right) \tmpa{j}{i}. .. math:: \newcommand{\tmpd}[2]{ \frac{1}{H_{#2} H_{#2}} \pder{U^{#1}}{X^{#2}} } \sum_{ij} \left( \vec{E}_j \otimes \vec{E}_i \right) \tmpd{i}{j}. Note that the negative of the third element is the transpose of the first one. In summary, the velocity gradient is given by the sum of .. math:: \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpd{1}{1} & \tmpd{2}{1} & \tmpd{3}{1} \\ \tmpd{1}{2} & \tmpd{2}{2} & \tmpd{3}{2} \\ \tmpd{1}{3} & \tmpd{2}{3} & \tmpd{3}{3} \\ \end{pmatrix} \begin{pmatrix} \vec{E}_1 \\ \vec{E}_2 \\ \vec{E}_3 \end{pmatrix}, .. math:: \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpb{1} & 0 & 0 \\ 0 & \tmpb{2} & 0 \\ 0 & 0 & \tmpb{3} \\ \end{pmatrix} \begin{pmatrix} \vec{E}_1 \\ \vec{E}_2 \\ \vec{E}_3 \end{pmatrix}, .. math:: \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} 0 & \tmpa{2}{1} - \tmpa{1}{2} & \tmpa{3}{1} - \tmpa{1}{3} \\ \tmpa{1}{2} - \tmpa{2}{1} & 0 & \tmpa{3}{2} - \tmpa{2}{3} \\ \tmpa{1}{3} - \tmpa{3}{1} & \tmpa{2}{3} - \tmpa{3}{2} & 0 \\ \end{pmatrix} \begin{pmatrix} \vec{E}_1 \\ \vec{E}_2 \\ \vec{E}_3 \end{pmatrix}. ================== Strain-rate tensor ================== The strain-rate tensor is defined as the symmetric part of it; namely the sum of .. math:: \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpd{1}{1} & \frac{1}{2} \tmpd{2}{1} + \frac{1}{2} \tmpd{1}{2} & \frac{1}{2} \tmpd{3}{1} + \frac{1}{2} \tmpd{1}{3} \\ sym. & \tmpd{2}{2} & \frac{1}{2} \tmpd{3}{2} + \frac{1}{2} \tmpd{2}{3} \\ sym. & sym. & \tmpd{3}{3} \\ \end{pmatrix} \begin{pmatrix} \vec{E}_1 \\ \vec{E}_2 \\ \vec{E}_3 \end{pmatrix}, .. math:: \begin{pmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{pmatrix} \begin{pmatrix} \tmpb{1} & 0 & 0 \\ sym. & \tmpb{2} & 0 \\ sym. & sym. & \tmpb{3} \\ \end{pmatrix} \begin{pmatrix} \vec{E}_1 \\ \vec{E}_2 \\ \vec{E}_3 \end{pmatrix}. ******* Example ******* .. mydetails:: Cylindrical coordinates .. include:: cylindrical.rst .. mydetails:: Rectilinear coordinates .. include:: rectilinear.rst .. mydetails:: Application .. include:: application.rst