################### Material derivative ################### By using .. math:: d\vec{u} = \sum_j \pder{\vec{u}}{Q^j} dQ^j, the material derivative of a vector :math:`\vec{u}` with respect to :math:`t` (one of the variables in :math:`Q^j`) leads to .. math:: \mder{\vec{u}} & = \pder{\vec{u}}{t} + \sum_j \tder{X^j}{t} \pder{\vec{u}}{X^j} \\ & = \pder{\vec{u}}{t} + \sum_j V^j \pder{\vec{u}}{X^j}, where .. math:: V^j \equiv \tder{X^j}{t} is introduced to distinguish the advected (:math:`U^i`) and the advecting (:math:`V^i`) velocity components. .. toctree:: :maxdepth: 1 covariant normal