.. _temperature_integration: .. include:: /references.txt ####################### Internal Energy Balance ####################### The equation of the internal energy is .. math:: \pder{T}{t} = A + D_x + D_y + D_z, where :math:`A` is the advective terms: .. math:: A \equiv - \dtempadv{1} - \dtempadv{2} - \dtempadv{3}, while :math:`D_i` is the diffusive term involving spatial differentiation in the :math:`i`-th direction: .. math:: D_i \equiv \dtempdif{i} \,\, (\text{no summation over}\,i). See :ref:`the spatial discretization `. The temporal discretization for each Runge-Kutta iteration leads to .. math:: \Delta T & = \alpha^k \Delta t \left( A^{k } + D^{k } \right) + \beta^k \Delta t \left( A^{k-1} + D^{k-1} \right), T^{k+1} & = T^k + \Delta T, when all diffusive terms are treated explicitly, while .. math:: \newcommand{\lap}[2]{ {#2} \gamma^k \Delta t \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{1}{J} \dif{}{\gcs{#1}} \left( \frac{J}{\sfact{#1}} \frac{1}{\sfact{#1}} \dif{}{\gcs{#1}} \right) } \Delta T & = \alpha^k \Delta t A^{k } + \beta^k \Delta t A^{k-1} + \gamma^k \Delta t D^{k }, T^{k+1} & = T^k + \left\{ 1 - \lap{3}{c} \right\}^{-1} \left\{ 1 - \lap{2}{c} \right\}^{-1} \left\{ 1 - \lap{1}{c} \right\}^{-1} \Delta T, when all diffusive terms are treated implicitly. Diffusive terms are sometimes partially treated implicitly (c.f., |VANDERPOEL2015|). When only the diffusive term in :math:`x` direction is implicitly treated (the default configuration in this project), we have .. math:: \Delta T & = \alpha^k \Delta t \left( A^{k } + D_2^{k } + D_3^{k } \right) + \beta^k \Delta t \left( A^{k-1} + D_2^{k-1} + D_3^{k-1} \right) + \gamma^k \Delta t D_1^{k }, T^{k+1} & = T^k + \left\{ 1 - \lap{1}{c} \right\}^{-1} \Delta T. First, the explicit and implicit terms are calculated and stored to the corresponding buffers: .. myliteralinclude:: /../../src/fluid/predict/t.c :language: c :tag: compute right-hand-side terms, which are added to buffers The buffers are used to compute :math:`\Delta T`: .. myliteralinclude:: /../../src/fluid/predict/t.c :language: c :tag: compute increments When necessary, linear systems are solved to take care of the implicit treatments: .. myliteralinclude:: /../../src/fluid/predict/t.c :language: c :tag: solve linear systems in x .. myliteralinclude:: /../../src/fluid/predict/t.c :language: c :tag: solve linear systems in y .. myliteralinclude:: /../../src/fluid/predict/t.c :language: c :tag: solve linear systems in z Finally the temperature field is updated: .. myliteralinclude:: /../../src/fluid/predict/t.c :language: c :tag: update temperature field