.. _quadratic_quantities: #################### Quadratic Quantities #################### Here we aim at confirming if :ref:`the theoretical relations of the quadratic quantities ` are satisfied even after discretized. Specifically, as discrete counterparts, we consider :ref:`the discrete momentum balance ` multiplied by the Jacobian determinant (incorporating the volume integrals) and the velocity: .. math:: \sumzc \sumyc \sumxf J \vel{1} \pder{\vel{1}}{t} = & - \sumzc \sumyc \sumxf J \vel{1} \dmomadv{1}{1} - \sumzc \sumyc \sumxf J \vel{1} \dmomadv{2}{1} - \sumzc \sumyc \sumxf J \vel{1} \dmomadv{3}{1} & - \sumzc \sumyc \sumxf J \vel{1} \dmompre{1} & + \sumzc \sumyc \sumxf J \vel{1} \dmomdif{1}{1} + \sumzc \sumyc \sumxf J \vel{1} \dmomdif{2}{1} + \sumzc \sumyc \sumxf J \vel{1} \dmomdif{3}{1} & + \sumzc \sumyc \sumxf J \vel{1} \ave{T}{\gcs{1}}, .. math:: \sumzc \sumyf \sumxc J \vel{2} \pder{\vel{2}}{t} = & - \sumzc \sumyf \sumxc J \vel{2} \dmomadv{1}{2} - \sumzc \sumyf \sumxc J \vel{2} \dmomadv{2}{2} - \sumzc \sumyf \sumxc J \vel{2} \dmomadv{3}{2} & - \sumzc \sumyf \sumxc J \vel{2} \dmompre{2} & + \sumzc \sumyf \sumxc J \vel{2} \dmomdif{1}{2} + \sumzc \sumyf \sumxc J \vel{2} \dmomdif{2}{2} + \sumzc \sumyf \sumxc J \vel{2} \dmomdif{3}{2}, .. math:: \sumzf \sumyc \sumxc J \vel{3} \pder{\vel{3}}{t} = & - \sumzf \sumyc \sumxc J \vel{3} \dmomadv{1}{3} - \sumzf \sumyc \sumxc J \vel{3} \dmomadv{2}{3} - \sumzf \sumyc \sumxc J \vel{3} \dmomadv{3}{3} & - \sumzf \sumyc \sumxc J \vel{3} \dmompre{3} & + \sumzf \sumyc \sumxc J \vel{3} \dmomdif{1}{3} + \sumzf \sumyc \sumxc J \vel{3} \dmomdif{2}{3} + \sumzf \sumyc \sumxc J \vel{3} \dmomdif{3}{3}. Similarly, multiplying :ref:`the discrete internal energy balance ` by temperature and volume-integrating it yield .. math:: \sumzc \sumyc \sumxc J T \pder{T}{t} = & - \sumzc \sumyc \sumxc J T \dtempadv{1} - \sumzc \sumyc \sumxc J T \dtempadv{2} - \sumzc \sumyc \sumxc J T \dtempadv{3} & + \sumzc \sumyc \sumxc J T \dtempdif{1} + \sumzc \sumyc \sumxc J T \dtempdif{2} + \sumzc \sumyc \sumxc J T \dtempdif{3}. It should be noted that, since the velocities are defined at different positions due to :ref:`the staggered grid arrangement `, quadratic quantities are also evaluated at different locations, which is the reason why we consider three components separately. With some algebra, we obtain .. math:: & \sumzc \sumyc \sumxf J \pder{k_1}{t} + \sumzc \sumyf \sumxc J \pder{k_2}{t} + \sumzf \sumyc \sumxc J \pder{k_3}{t} = & - \sumzc \sumyc \sumxc \dkdis{1}{1} - \sumzc \sumyf \sumxf \dkdis{2}{1} - \sumzf \sumyc \sumxf \dkdis{3}{1} & - \sumzc \sumyf \sumxf \dkdis{1}{2} - \sumzc \sumyc \sumxc \dkdis{2}{2} - \sumzf \sumyf \sumxc \dkdis{3}{2} & - \sumzf \sumyc \sumxf \dkdis{1}{3} - \sumzf \sumyf \sumxc \dkdis{2}{3} - \sumzc \sumyc \sumxc \dkdis{3}{3} & + \sumzc \sumyc \sumxf J \vel{1} \ave{T}{\gcs{1}}, and .. math:: & \sumzc \sumyc \sumxc J \pder{h}{t} = & - \sumzc \sumyc \sumxf \dhdis{1} - \sumzc \sumyf \sumxc \dhdis{2} - \sumzf \sumyc \sumxc \dhdis{3} & - \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \left( \frac{J}{\sfact{1}} T \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right) }{\frac{1}{2}} & + \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \left( \frac{J}{\sfact{1}} T \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right) }{\ngp{1} + \frac{1}{2}}, with respect to the squared velocity and the squared temperature, respectively. To derive them, the individual components are focused below. .. toctree:: :maxdepth: 1 derivation/prerequisite/main derivation/advective derivation/pressure_gradient derivation/diffusive The derived two relations have source terms and sink terms, which are elaborated below as well as their implementations. .. toctree:: :maxdepth: 1 squared_velocity squared_temperature