.. _discrete_nusselt: ############## Nusselt number ############## ************* Heat transfer ************* To start, we define the heat transfer: surface-integrating :ref:`the internal energy balance ` in the homogeneous directions yields .. math:: \sumzc \sumyc \frac{J}{\sfact{1}} \pder{T}{t} = \sumzc \sumyc \frac{1}{\sfact{1}} \dif{}{\gcs{1}} \left( - \frac{J}{\sfact{1}} \vel{1} \ave{T}{\gcs{1}} + \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right). Assuming the flow field achieves a statistically-steady state .. math:: \pder{T}{t} \rightarrow 0 leads to .. math:: \frac{1}{\sfact{1}} \dif{}{\gcs{1}} \left\{ \sumzc \sumyc \left( \frac{J}{\sfact{1}} \vel{1} \ave{T}{\gcs{1}} - \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right) \right\} = 0, where the wall-normal differentiation and the homogeneous summations are interchanged, which is justified for rectilinear coordinates. We introduce .. _eq_heat_transfer: .. math:: \heattransfer \equiv \sumzc \sumyc \left( \frac{J}{\sfact{1}} \vel{1} \ave{T}{\gcs{1}} - \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} \right), which is the internal energy going through a specific wall-normal position per unit time (heat transfer). Note that the sign is decided such that *normal* cases :math:`\vat{T}{\frac{1}{2}} > \vat{T}{\ngp{1} + \frac{1}{2}}` give positive value. The computation of the heat transfer on the walls :math:`\heattransfer` are implemented as follows: .. myliteralinclude:: /../../src/logging/heat_transfer.c :language: c :tag: compute heat transfer on the walls By further integrating the differential equation in the wall-normal direction, we obtain .. math:: \sum_{i = 1}^{\chi} \sfact{1} \frac{1}{\sfact{1}} \dif{\heattransfer}{\gcs{1}} = - \vat{\heattransfer}{\frac{1}{2}} + \vat{\heattransfer}{\xi + \frac{1}{2}} = 0, indicating that :math:`\heattransfer` is constant for all wall-normal cell faces (:math:`\frac{1}{2}, \frac{3}{2}, \cdots, \ngp{1} - \frac{1}{2}, \ngp{1} + \frac{1}{2}`). ************** Nusselt number ************** We focus on how much the heat transfer is enhanced compared to the reference case :math:`\heattransfer_{ref}` if the flow fields were stationary with the given :math:`Ra` and :math:`Pr`. For stationary flow fields, heat is purely conducted diffusively (i.e., :math:`\vel{1} \equiv 0`), and the temperature profile is linear in the wall-normal direction: .. math:: \frac{1}{\sfact{1}} \dif{T}{\gcs{1}} = - 1 \,\, (\because \text{boundary conditions}), and thus the reference heat transfer is given by .. math:: \heattransfer_{ref} = \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}}. The Nusselt number is defined as the ratio of them: .. math:: Nu \equiv \frac{\heattransfer}{\heattransfer_{ref}}. As proved in :ref:`the global balance of squared temperature `, :math:`\heattransfer` is linked to the source and sink of the squared temperature relation. ******************* Squared Temperature ******************* Now we revisit the relations derived in :ref:`the global balance of squared temperature `: .. math:: \dhinjall. Due to the Dirichlet boundary condition with respect to the temperature, we can extract :math:`T` out of summation symbols to obtain .. math:: \vat{ T }{\frac{1}{2}} \vat{ \heattransfer }{\frac{1}{2}} - \vat{ T }{\ngp{1} + \frac{1}{2}} \vat{ \heattransfer }{\ngp{1} + \frac{1}{2}}. Additionally, since we fix the temperature difference of the two walls .. math:: \vat{T}{\frac{1}{2}} - \vat{T}{\ngp{1} + \frac{1}{2}} \equiv 1, and :math:`\heattransfer` is equal at every wall-normal cell faces .. math:: \heattransfer \equiv \vat{\heattransfer}{\frac{1}{2}} = \vat{\heattransfer}{\ngp{1} + \frac{1}{2}}, we notice .. math:: \heattransfer = \dhinjall, and of course .. math:: \heattransfer = \dhdisall. **************** Squared Velocity **************** Integrating :ref:`the definition of heat transfer ` in the wall-normal direction yields .. math:: \sumxc \sfact{1} \heattransfer = \sumzc \sumyc \sumxc J \vel{1} \ave{T}{\gcs{1}} - \sumzc \sumyc \sumxc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \dif{T}{\gcs{1}}. The left-hand side is equal to :math:`\heattransfer` since :math:`\sumxc \sfact{1} \equiv 1` (recall that we assume the wall-normal length of the domain is unity). The second term in the right-hand side leads to .. math:: & - \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \sumxc \dif{T}{\gcs{1}} = & - \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \left( \vat{T}{\ngp{1} + \frac{1}{2}} - \vat{T}{\frac{1}{2}} \right) = & \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} = & \heattransfer_{ref}, since :math:`J / \sfact{1}` is independent to the homogeneous directions. Thus we notice that .. math:: \heattransfer = \sumzc \sumyc \sumxc J \vel{1} \ave{T}{\gcs{1}} + \heattransfer_{ref}, which relates the Nusselt number with the squared velocity relations.