.. _example_typical_case: .. include:: /references.txt ############# Typical Cases ############# ************** Visualisations ************** Temperature fields at the end of the simulations. 2D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-2d/snapshot.png :width: 600 3D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-3d/snapshot.png :width: 600 **************************** Incompressibility constraint **************************** Maximum divergence of the velocity field, which should be sufficiently small. 2D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-2d/divergence.png :width: 600 3D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-3d/divergence.png :width: 600 *************** Nusselt numbers *************** ========= Evolution ========= :math:`Nu` calculated using the different formulae, which are monitored during the run, are shown as a function of time: * red: heat fluxes on the walls * blue: energy input * green: kinetic energy dissipation * magenta: thermal energy dissipation 2D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-2d/nusselt_time.png :width: 600 3D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-3d/nusselt_time.png :width: 600 .. note:: The black-dashed line in the two-dimensional result shows a reference value by |VANDERPOEL2013| with the same :math:`Ra` and :math:`Pr` but the different domain geometry is different (box). .. seealso:: :ref:`Nusselt number relations `. ========================= Temporary-Averaged Values ========================= As derived :ref:`here `, there are two contributions which transfer heat: advective contribution: .. math:: \sumzc \sumyc \frac{J}{\sfact{1}} \vel{1} \ave{T}{\gcs{1}}, and diffusive contribution: .. math:: - \sumzc \sumyc \frac{1}{\sqrt{Pr} \sqrt{Ra}} \frac{J}{\sfact{1}} \frac{1}{\sfact{1}} \dif{T}{\gcs{1}}. After averaged over time and homogeneous directions, they are displayed as a function of the wall-normal position :math:`x` here: 2D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-2d/nusselt_x.png :width: 600 3D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-3d/nusselt_x.png :width: 600 ******************* Standard deviations ******************* Variances of (red) :math:`\ux`, (blue) :math:`\uy`, (magenta) :math:`\uz`, and (green) :math:`T` are shown here. 2D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-2d/std.png :width: 600 3D: .. image:: https://raw.githubusercontent.com/NaokiHori/SimpleNSSolver/artifacts/artifacts/typical-3d/std.png :width: 600 .. note:: Although the :math:`y` and the :math:`z` directions are homogeneous, the blue and magenta lines may deviate, which is attributed to the low :math:`Ra` and short time.