.. _governing_equations: ######### Equations ######### **************** Dimensional form **************** In this project, we consider the conservation laws of the mass, the momentum, and the internal energy, which are governed by .. math:: \pder{\tilde{u}_i}{\tilde{x}_i} = 0, .. math:: \pder{\tilde{u}_i}{\tilde{t}} + \tilde{u}_j \pder{\tilde{u}_i}{\tilde{x}_j} = - \frac{1}{\tilde{\rho}} \pder{\tilde{p}}{\tilde{x}_i} + \tilde{\nu} \pder{}{\tilde{x}_j} \pder{\tilde{u}_i}{\tilde{x}_j} + \tilde{g}_i, .. math:: \pder{\tilde{T}}{\tilde{t}} + \tilde{u}_j \pder{\tilde{T}}{\tilde{x}_j} = \tilde{\kappa} \pder{}{\tilde{x}_j} \pder{\tilde{T}}{\tilde{x}_j}, respectively, where the summation rule is applied. .. note:: * :math:`\tilde{q}` implies that the quantity :math:`q` is dimensional (i.e., before normalised). * We assume the physical properties (e.g., the density :math:`\tilde{\rho}`, the dynamic and kinematic viscosities :math:`\tilde{\mu}, \tilde{\nu}`, the thermal diffusivity :math:`\tilde{\kappa}`) to be constant. ******************** Non-dimensional form ******************** In this project, we focus on `Rayleigh-Bénard convection `_, which is an excellent model problem to shed light on the conservation properties. By adopting `Boussinesq approximation `_ and normalise the equations with proper scales, we obtain the following non-dimensional equations which play the central role in this project. .. _eq_mass: .. math:: \pder{u_i}{x_i} = 0. .. _eq_momentum: .. math:: \pder{u_i}{t} + u_j \pder{u_i}{x_j} = - \pder{p}{x_i} + \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{}{x_j} \pder{u_i}{x_j} + T \delta_{ix}. .. _eq_temperature: .. math:: \pder{T}{t} + u_j \pder{T}{x_j} = \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{}{x_j} \pder{T}{x_j}. Here Rayleigh number :math:`Ra` and Prandtl number :math:`Pr` are dimensionless parameters given by .. math:: Ra & = \frac{\tilde{\beta} \tilde{g} {\tilde{l_x}}^3 \left( \Delta \tilde{T} \right)}{\tilde{\nu} \tilde{\kappa}}, \\ Pr & = \frac{\tilde{\nu}}{\tilde{\kappa}}, where :math:`\tilde{\beta}`, :math:`\tilde{g}`, :math:`\tilde{l_x}`, and :math:`\Delta \tilde{T} = \tilde{T}_{H} - \tilde{T}_{L}` are the thermal expansion coefficient :math:`\left[ K^{-1} \right]`, the gravitational acceleration :math:`\left[ L T^{-2} \right]`, the distance between the walls :math:`\left[ L \right]`, and the temperature difference :math:`\left[ K \right]`, respectively. Also, by taking the inner product of the momentum balance and the velocity vector, a relation with respect to the squared velocity is obtained: .. _eq_squared_velocity: .. math:: \pder{k}{t} + u_j \pder{k}{x_j} = - u_j \pder{p}{x_j} + \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{}{x_j} \left( u_i \pder{u_i}{x_j} \right) - \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{u_i}{x_j} \pder{u_i}{x_j} + u_i T \delta_{ix}, where .. math:: \tilde{k} \equiv \frac{1}{2} \tilde{u}_i \tilde{u}_i. Similarly, by multiplying the temperature with the internal energy balance, we obtain the relation with respect to the squared temperature: .. _eq_squared_temperature: .. math:: \pder{h}{t} + u_j \pder{h}{x_j} = \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{}{x_j} \left( T \pder{T}{x_j} \right) - \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{T}{x_j} \pder{T}{x_j}, where .. math:: \tilde{h} \equiv \frac{1}{2} \tilde{T} \tilde{T}. .. image:: image/schematic.png :align: center :width: 400 Periodic boundary conditions are imposed in the homogeneous directions :math:`y` and :math:`z`. The boundary conditions in the :math:`x` (wall-normal) direction are listed here: * :math:`\ux = 0`: Dirichlet condition, impermeable walls. * :math:`\uy = \uz = 0`: Dirichlet condition, no-slip and stationary walls. * :math:`\partial p / \partial x = 0`: Neumann condition. * :math:`\vat{T}{x = 0}, \vat{T}{x = l_x \equiv 1}`: Dirichlet condition, fixed temperature satisfying :math:`\vat{T}{x = 0} - \vat{T}{x = 1} = 1`. .. note:: * Without loss of generality, :math:`\tilde{\beta}`, :math:`\tilde{g}`, :math:`\tilde{l_x}`, and :math:`\Delta \tilde{T}` are fixed to unity. * The reference velocity scale :math:`\tilde{U} \left[ L T^{-1} \right]` is defined by the other parameters :math:`\tilde{U} = \sqrt{\tilde{\beta} \tilde{g} \tilde{l_x} \left( \Delta \tilde{T} \right)} \left( = 1 \right)`, which is often called as the free-fall velocity. .. _continuous_quadratic_quantities: ******************** Quadratic Quantities ******************** We investigate the properties of the mentioned relations with respect to the quadratic quantities :math:`k` and :math:`h`. In particular, we focus on how the net amount of them: .. math:: & \int \int \int k dx dy dz, & \int \int \int h dx dy dz, behave, which follow .. math:: & \int \int \int \pder{k}{t} dx dy dz = \int \int \int \left\{ - u_j \pder{k}{x_j} - u_i \pder{p}{x_i} + \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{}{x_j} \left( u_i \pder{u_i}{x_j} \right) - \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{u_i}{x_j} \pder{u_i}{x_j} + u_i T \delta_{ix} \right\} dx dy dz, & \int \int \int \pder{h}{t} dx dy dz = \int \int \int \left\{ - u_j \pder{h}{x_j} + \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{}{x_j} \left( T \pder{T}{x_j} \right) - \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{T}{x_j} \pder{T}{x_j} \right\} dx dy dz, giving .. _quadratic_quantity_balance: .. math:: & \int \int \int \pder{k}{t} dx dy dz = \int \int \int u_x T dx dy dz - \int \int \int \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{u_i}{x_j} \pder{u_i}{x_j} dx dy dz, & \int \int \int \pder{h}{t} dx dy dz = \vat{ T }{x = 1} \int \int \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \pder{T}{x} }{x = 1} dy dz - \vat{ T }{x = 0} \int \int \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \pder{T}{x} }{x = 0} dy dz - \int \int \int \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{T}{x_j} \pder{T}{x_j} dx dy dz. In this project, we aim at faithfully replicating these relations from a numerical standpoint. Derivation is given below, focusing on the individual components. =============== Advective terms =============== We have .. math:: - \int \int \int u_j \pder{k}{x_j} dx dy dz = - \int \int \int \left( \pder{u_j k}{x_j} - k \pder{u_j}{x_j} \right) dx dy dz, which is, due to the incompressibility: .. math:: - \int \int \int \pder{u_j k}{x_j} dx dy dz = - \int \int \vat{ \left( u_x k \right) }{x = 1} dy dz + \int \int \vat{ \left( u_x k \right) }{x = 0} dy dz, where the divergence theorem and the periodic boundary conditions are utilized. Since the walls are impermeable, :math:`u_x \equiv 0` on the walls and thus this leads to 0, indicating that the advective terms do not affect the total amount of :math:`k`. Note that exactly the same statement holds for the advective terms of :math:`h`. ======================= Pressure-gradient terms ======================= We consider .. math:: - \int \int \int u_i \pder{p}{x_i} dx dy dz. By following the identical algebra we adopted to investigate the advective terms, we find that the pressure-gradient terms do not affect the net amount of :math:`k` either. ============================ Diffusive terms - conduction ============================ We have .. math:: \int \int \int \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{}{x_j} \left( u_i \pder{u_i}{x_j} \right) dx dy dz. By utilizing the divergence theorem, this leads to .. math:: \int \int \frac{\sqrt{Pr}}{\sqrt{Ra}} \vat{ \left( u_i \pder{u_i}{x} \right) }{x = 1} dy dz - \int \int \frac{\sqrt{Pr}}{\sqrt{Ra}} \vat{ \left( u_i \pder{u_i}{x} \right) }{x = 0} dy dz, where periodic boundary conditions are assumed in the :math:`y` and :math:`z` directions. Since we assume that the walls are impermeable and fixed (i.e., :math:`u_i \equiv 0_i` on the walls), the integrands are all zero for all directions, indicating that the conductive terms do not alter the total amount of :math:`k`. Regarding the conductive terms with respect to :math:`h`, we also have an analogous relation: .. math:: \int \int \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \left( T \pder{T}{x} \right) }{x = 1} dy dz - \int \int \frac{1}{\sqrt{Pr} \sqrt{Ra}} \vat{ \left( T \pder{T}{x} \right) }{x = 0} dy dz. Since they are non-zero in general, we find that the conduction plays a role in the budget of :math:`h`. ============================= Diffusive terms - dissipation ============================= We have .. math:: - \int \int \int \frac{\sqrt{Pr}}{\sqrt{Ra}} \pder{u_i}{x_j} \pder{u_i}{x_j} dx dy dz and .. math:: - \int \int \int \frac{1}{\sqrt{Pr} \sqrt{Ra}} \pder{T}{x_j} \pder{T}{x_j} dx dy dz, which are always non-positive and dissipate :math:`k` and :math:`h`. =============== Body force term =============== We have .. math:: \int \int \int u_x T dx dy dz, which works as a source term and alters the net amount of :math:`k`.