#################### Stream-wise operator #################### ******* Average ******* Average at stream-wise cell faces: .. math:: \vat{ \ave{ q }{ \gy } }{ j + \frac{1}{2} } = \frac{1}{2} \vat{q}{j} + \frac{1}{2} \vat{q}{j + 1} Average at stream-wise cell centers: .. math:: \vat{ \ave{ q }{ \gy } }{ j } = \frac{1}{2} \vat{q}{j - \frac{1}{2}} + \frac{1}{2} \vat{q}{j + \frac{1}{2}} *************** Differentiation *************** Differentiation at stream-wise cell faces: .. math:: \vat{ \dif{ q }{ \gy } }{ j + \frac{1}{2} } = - \vat{q}{j} + \vat{q}{j + 1} Differentiation at stream-wise cell centers: .. math:: \vat{ \dif{ q }{ \gy } }{ j } = - \vat{q}{j - \frac{1}{2}} + \vat{q}{j + \frac{1}{2}} ********* Summation ********* Summation of a quantity defined at stream-wise cell faces: .. math:: \sumyf q \equiv \vat{q}{\frac{1}{2}} + \vat{q}{\frac{3}{2}} + \cdots + \vat{q}{\ny - \frac{3}{2}} + \vat{q}{\ny - \frac{1}{2}} Summation of a quantity defined at stream-wise cell centers: .. math:: \sumyc q \equiv \vat{q}{1} + \vat{q}{2} + \cdots + \vat{q}{\ny - 1} + \vat{q}{\ny}