.. _kinetic_energy: ############## Kinetic energy ############## To begin with, we consider the velocity of the :math:`\ia`-th object on the Cartesian coordinate. The time derivative of the position vector: .. math:: \posvec yields .. math:: - \vec{e}_x \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } + \vec{e}_y \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} }, which is the velocity of the :math:`\ia`-th object. The kinetic energy of this object is given by .. math:: \kinetic_{\ia} = \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } \right)^2 + \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} } \right)^2, and thus the total kinetic energy of the system is .. math:: \kinetic & \equiv \sum_{\ia = 0}^{N - 1} \kinetic_{\ia} & = \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } \right)^2 + \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \left( \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} } \right)^2 & = \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \sum_{\ib = 0}^{\ia} l \vel_{\ib} \sin{ \pos_{\ib} } \sum_{\ic = 0}^{\ia} l \vel_{\ic} \sin{ \pos_{\ic} } + \sum_{\ia = 0}^{N - 1} \frac{1}{2} m \sum_{\ib = 0}^{\ia} l \vel_{\ib} \cos{ \pos_{\ib} } \sum_{\ic = 0}^{\ia} l \vel_{\ic} \cos{ \pos_{\ic} } & = \frac{1}{2} m l^2 \sum_{\ia = 0}^{N - 1} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} \vel_{\ib} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right). To proceed, we use the identity: .. math:: \sum_{\ia = 0}^{N - 1} \sum_{\ib = 0}^{\ia} \sum_{\ic = 0}^{\ia} Q_{\ib \ic} = \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} Q_{\ib \ic}. .. mydetails:: Derivation .. include:: summation.rst As a consequence, we obtain .. math:: \kinetic = \kene. ************************* Generalized velocity part ************************* First of all, we consider .. math:: \pder{\kinetic}{\vel_{\ia}} & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \pder{\vel_{\ib}}{\vel_{\ia}} \vel_{\ic} \cos \left( \pos_{\ib} - \pos_{\ic} \right) & + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \pder{\vel_{\ic}}{\vel_{\ia}} \cos \left( \pos_{\ib} - \pos_{\ic} \right), where the two terms are equal by interchanging the indices to obtain .. math:: \pder{\kinetic}{\vel_{\ia}} & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \pder{\vel_{\ic}}{\vel_{\ia}} \cos \left( \pos_{\ib} - \pos_{\ic} \right) & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \delta_{\ic \ia} \cos \left( \pos_{\ib} - \pos_{\ic} \right) & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ib, \ia \right) \right\} \vel_{\ib} \cos \left( \pos_{\ib} - \pos_{\ia} \right) & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ib} \cos \left( \pos_{\ia} - \pos_{\ib} \right). Differentiating this relation with respect to time leads to .. math:: \tder{}{t} \pder{\kinetic}{\vel_{\ia}} & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \tder{}{t} \left\{ \vel_{\ib} \cos \left( \pos_{\ia} - \pos_{\ib} \right) \right\} & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \tder{\vel_{\ib}}{t} \cos \left( \pos_{\ia} - \pos_{\ib} \right) & - m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ib} \left( \vel_{\ia} - \vel_{\ib} \right) \sin \left( \pos_{\ia} - \pos_{\ib} \right). *************************** Generalized coordinate part *************************** .. math:: \pder{\kinetic}{\pos_{\ia}} & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \pder{}{\pos_{\ia}} \cos \left( \pos_{\ib} - \pos_{\ic} \right) & = - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \left( \pder{\pos_{\ib}}{\pos_{\ia}} - \pder{\pos_{\ic}}{\pos_{\ia}} \right) \sin \left( \pos_{\ib} - \pos_{\ic} \right) & = - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \left( \delta_{\ib \ia} - \delta_{\ic \ia} \right) \sin \left( \pos_{\ib} - \pos_{\ic} \right) & = - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \delta_{\ib \ia} \sin \left( \pos_{\ib} - \pos_{\ic} \right) + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \vel_{\ib} \vel_{\ic} \delta_{\ic \ia} \sin \left( \pos_{\ib} - \pos_{\ic} \right) & = - \frac{1}{2} m l^2 \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ia, \ic \right) \right\} \vel_{\ia} \vel_{\ic} \sin \left( \pos_{\ia} - \pos_{\ic} \right) + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ib, \ia \right) \right\} \vel_{\ib} \vel_{\ia} \sin \left( \pos_{\ib} - \pos_{\ia} \right) & = - m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ia} \vel_{\ib} \sin \left( \pos_{\ia} - \pos_{\ib} \right). ***** Total ***** In the Lagrange's equation, the following terms contribute: .. math:: \tder{}{t} \pder{\kinetic}{\vel_{\ia}} - \pder{\kinetic}{\pos_{\ia}} & = m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \tder{\vel_{\ib}}{t} \cos \left( \pos_{\ia} - \pos_{\ib} \right) & + m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ia, \ib \right) \right\} \vel_{\ib} \vel_{\ib} \sin \left( \pos_{\ia} - \pos_{\ib} \right).