#################### Symbols and identity #################### Two symbols are used to represent discrete operations: .. math:: \dif{q} & \equiv q^{n+1} - q^{n }, \ave{q} & \equiv \frac{1}{2} q^{n+1} + \frac{1}{2} q^{n }, which are the central differentiation and the central interpolation at the intermediate time step :math:`n + \frac{1}{2}`, respectively. The discrete derivative of the trigonometric functions are .. math:: \dder{}{t} \cos \pos & = \frac{ \cos \pos^{n+1} - \cos \pos^{n } }{ \dif{t} } & = \frac{ \cos \left( \ave{\pos} + \frac{\dif{\pos}}{2} \right) - \cos \left( \ave{\pos} - \frac{\dif{\pos}}{2} \right) }{ \dif{t} } & = - \frac{2}{\dif{t}} \sin \frac{\dif{\pos}}{2} \sin \ave{\pos} & = - \frac{2}{\dif{t}} \frac{\dif{\pos}}{2} \text{sinc} \frac{\dif{\pos}}{2} \sin \ave{\pos} & = - \ave{\vel} \text{sinc} \frac{\dif{\pos}}{2} \sin \ave{\pos}, .. math:: \dder{}{t} \sin \pos & = \frac{ \sin \pos^{n+1} - \sin \pos^{n } }{ \dif{t} } & = \frac{ \sin \left( \ave{\pos} + \frac{\dif{\pos}}{2} \right) - \sin \left( \ave{\pos} - \frac{\dif{\pos}}{2} \right) }{ \dif{t} } & = \frac{2}{\dif{t}} \sin \frac{\dif{\pos}}{2} \cos \ave{\pos} & = \frac{2}{\dif{t}} \frac{\dif{\pos}}{2} \text{sinc} \frac{\dif{\pos}}{2} \cos \ave{\pos} & = \ave{\vel} \text{sinc} \frac{\dif{\pos}}{2} \cos \ave{\pos}.