################### Energy conservation ################### To construct a stable scheme, we consider :ref:`the conservation of energy `: .. math:: \total \equiv \kinetic + \potential = const., where .. math:: \kinetic & = \kene, \potential & = \pene. ******************* Kinetic energy part ******************* .. math:: \dder{\kinetic}{t} & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \dder{}{t} \left( \vel_{\ib} \vel_{\ic} \cmat{\ib}{\ic} \right) & = \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \dder{\vel_{\ib}}{t} \ave{ \vel_{\ic} \cmat{\ib}{\ic} } & + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \dder{\vel_{\ic}}{t} \ave{\cmat{\ib}{\ic}} & + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ic}} \dder{}{t} \cmat{\ib}{\ic}. The first two terms yield .. math:: m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \dder{\vel_{\ib}}{t} \left( \frac{1}{2} \ave{ \vel_{\ic} \cmat{\ib}{\ic} } + \frac{1}{2} \ave{\vel_{\ic}} \, \ave{\cmat{\ib}{\ic}} \right), while the last term leads to .. math:: & - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ic}} \left( \ave{\vel_{\ib}} - \ave{\vel_{\ic}} \right) \text{sinc} \left( \frac{ \dif{\pos_{\ib}} }{2} - \frac{ \dif{\pos_{\ic}} }{2} \right) \sin \left( \ave{\pos_{\ib}} - \ave{\pos_{\ic}} \right) = & - \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ic}} \, \ave{\vel_{\ib}} \text{sinc} \left( \frac{ \dif{\pos_{\ib}} }{2} - \frac{ \dif{\pos_{\ic}} }{2} \right) \sin \left( \ave{\pos_{\ib}} - \ave{\pos_{\ic}} \right) & + \frac{1}{2} m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ic}} \, \ave{\vel_{\ic}} \text{sinc} \left( \frac{ \dif{\pos_{\ib}} }{2} - \frac{ \dif{\pos_{\ic}} }{2} \right) \sin \left( \ave{\pos_{\ib}} - \ave{\pos_{\ic}} \right) = & - m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ic}} \, \ave{\vel_{\ib}} \text{sinc} \left( \frac{ \dif{\pos_{\ib}} }{2} - \frac{ \dif{\pos_{\ic}} }{2} \right) \sin \left( \ave{\pos_{\ib}} - \ave{\pos_{\ic}} \right). Note that .. math:: \dder{\pos_{\ia}}{t} = \ave{\vel_{\ia}} is assumed. As a result, we have .. math:: \dder{\kinetic}{t} & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \dder{\vel_{\ib}}{t} \left( \frac{1}{2} \ave{ \vel_{\ic} \cmat{\ib}{\ic} } + \frac{1}{2} \ave{\vel_{\ic}} \, \ave{\cmat{\ib}{\ic}} \right) & - m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ic}} \, \ave{\vel_{\ib}} \text{sinc} \left( \frac{ \dif{\pos_{\ib}} - \dif{\pos_{\ic}} }{2} \right) \sin \left( \ave{\pos_{\ib}} - \ave{\pos_{\ic}} \right) & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \dder{\vel_{\ib}}{t} \left( \frac{1}{2} \ave{ \vel_{\ic} \cmat{\ic}{\ib} } + \frac{1}{2} \ave{\vel_{\ic}} \, \ave{\cmat{\ic}{\ib}} \right) & + m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ic}} \, \ave{\vel_{\ib}} \, \ave{\vel_{\ib}} \text{sinc} \left( \frac{ \dif{\pos_{\ic}} }{2} - \frac{ \dif{\pos_{\ib}} }{2} \right) \sin \left( \ave{\pos_{\ic}} - \ave{\pos_{\ib}} \right). ********************* Potential energy part ********************* .. math:: \dder{\potential}{t} & = - m g l \sum_{\ic = 0}^{N - 1} \left( N - \ic \right) \dder{}{t} \sin \pos_{\ic} & = - m g l \sum_{\ic = 0}^{N - 1} \left( N - \ic \right) \ave{\vel_{\ic}} \text{sinc} \frac{\dif{\pos_{\ic}}}{2} \cos \ave{\pos_{\ic}}. ************ Total energy ************ The change of the total energy results in .. math:: \dder{\total}{t} & = m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ic}} \dder{\vel_{\ib}}{t} \ave{\cmat{\ic}{\ib}} \left( \frac{1}{2} + \frac{1}{2} \frac{ \ave{ \vel_{\ic} \cmat{\ic}{\ib} } }{ \ave{\vel_{\ic}} \, \ave{\cmat{\ic}{\ib}} } \right) & + m l^2 \sum_{\ib = 0}^{N - 1} \sum_{\ic = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ic}} \, \ave{\vel_{\ib}} \, \ave{\vel_{\ib}} \text{sinc} \left( \frac{ \dif{\pos_{\ic}} }{2} - \frac{ \dif{\pos_{\ib}} }{2} \right) \sin \left( \ave{\pos_{\ic}} - \ave{\pos_{\ib}} \right) & - m g l \sum_{\ic = 0}^{N - 1} \left( N - \ic \right) \ave{\vel_{\ic}} \text{sinc} \frac{\dif{\pos_{\ic}}}{2} \cos \ave{\pos_{\ic}} & = 0. Factoring :math:`\ave{\vel_{\ic}}` yields .. math:: \dder{\total}{t} = \sum_{\ic = 0}^{N - 1} \ave{\vel_{\ic}} Q_{\ic} = 0, where .. math:: Q_{\ic} & \equiv m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \dder{\vel_{\ib}}{t} \ave{\cmat{\ic}{\ib}} \left( \frac{1}{2} + \frac{1}{2} \frac{ \ave{ \vel_{\ic} \cmat{\ic}{\ib} } }{ \ave{\vel_{\ic}} \, \ave{\cmat{\ic}{\ib}} } \right) & + m l^2 \sum_{\ib = 0}^{N - 1} \left\{ N - \max \left( \ib, \ic \right) \right\} \ave{\vel_{\ib}} \, \ave{\vel_{\ib}} \text{sinc} \left( \frac{ \dif{\pos_{\ic}} }{2} - \frac{ \dif{\pos_{\ib}} }{2} \right) \sin \left( \ave{\pos_{\ic}} - \ave{\pos_{\ib}} \right) & - m g l \left( N - \ic \right) \text{sinc} \frac{\dif{\pos_{\ic}}}{2} \cos \ave{\pos_{\ic}}. Requesting :math:`Q_{\ic} \equiv 0_{\ic}` results in the discrete Lagrange's equation to be handled: .. math:: \dlag.