############# Least squares ############# We consider a set of :math:`N` points :math:`(x_i, y_i)` (where :math:`i = 0, 1, \dots, N-1`) on a two-dimensional plane. We aim at fitting them using a polynomial of degree :math:`M-1`: .. math:: y = f(x) = \sum_{j = 0}^{M - 1} w_j x^j. For later convenience, the partial derivative with respect to :math:`w_k` is given by: .. math:: g(x) \equiv \frac{\partial f}{\partial w_k} = x^k for :math:`k = 0, 1, \dots, M - 1`. The error function is defined as: .. math:: J(w_j) \equiv \sum_{i = 0}^{N - 1} \left( \sum_{j = 0}^{M - 1} w_j x_i^j - y_i \right)^2 and the goal is to minimize this error. Since there are no constraints, setting the stationary condition gives: .. math:: \frac{\partial J}{\partial w_k} = 2 \sum_{i = 0}^{N - 1} \left[ f(x_i) - y_i \right] g(x_i) = 2 \sum_{i = 0}^{N - 1} \left( \sum_{j = 0}^{M - 1} w_j x_i^j - y_i \right) x_i^k = 0, which leads to the normal equations: .. math:: \sum_{j = 0}^{M - 1} \left( \sum_{i = 0}^{N - 1} x_i^{j + k} \right) w_j = \sum_{i = 0}^{N - 1} x_i^k y_i. Explicitly, this system can be written in matrix form as: .. math:: \begin{pmatrix} \sum_i x_i^0 & \sum_i x_i^1 & \cdots & \sum_i x_i^{M - 1} \\ \sum_i x_i^1 & \sum_i x_i^2 & \cdots & \sum_i x_i^{M} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_i x_i^{M - 1} & \sum_i x_i^M & \cdots & \sum_i x_i^{2M - 2} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_{M - 1} \end{pmatrix} = \begin{pmatrix} \sum_i x_i^0 y_i \\ \sum_i x_i^1 y_i \\ \vdots \\ \sum_i x_i^{M - 1} y_i \\ \end{pmatrix}. Solving for :math:`w_k` (:math:`k = 0, 1, \dots, M - 1`) provides the best-fit polynomial coefficients.