.. _sherman_morrison: ############### Perturbed cases ############### We consider the following system: .. math:: \begin{bmatrix} c_0 & u_0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & l_0 \\ l_1 & c_1 & u_1 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & l_2 & c_2 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c_{i-1} & u_{i-1} & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & l_{i } & c_{i } & u_{i } & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & l_{i+1} & c_{i+1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & c_{n-3} & u_{n-3} & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & l_{n-2} & c_{n-2} & u_{n-2} \\ u_{n-1} & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & l_{n-1} & c_{n-1} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{i-1} \\ x_{i } \\ x_{i+1} \\ \vdots \\ x_{n-3} \\ x_{n-2} \\ x_{n-1} \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ \vdots \\ q_{i-1} \\ q_{i } \\ q_{i+1} \\ \vdots \\ q_{n-3} \\ q_{n-2} \\ q_{n-1} \end{bmatrix}, where, compare with :ref:`the original tri-diagonal system `, the top-right and the bottom-left corners have non-zero values (:math:`l_0` and :math:`u_{n - 1}`, respectively), which appears in particular when periodic boundary conditions are imposed. Since we have .. math:: c_0 x_0 + u_0 x_1 & = q_0 - l_0 x_{n - 1}, l_{n - 2} x_{n - 3} + c_{n - 2} x_{n - 2} & = q_{n - 2} - u_{n - 2} x_{n - 1}, at the :math:`0`-th and the :math:`n - 2`-th rows, we reformulate the system as .. math:: \begin{bmatrix} c_0 & u_0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ l_1 & c_1 & u_1 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & l_2 & c_2 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c_{i-1} & u_{i-1} & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & l_{i } & c_{i } & u_{i } & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & l_{i+1} & c_{i+1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & c_{n-4} & u_{n-4} & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & l_{n-3} & c_{n-3} & u_{n-3} \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & l_{n-2} & c_{n-2} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{i-1} \\ x_{i } \\ x_{i+1} \\ \vdots \\ x_{n-4} \\ x_{n-3} \\ x_{n-2} \end{bmatrix} = \begin{bmatrix} q_0 - l_0 x_{n-1} \\ q_1 \\ q_2 \\ \vdots \\ q_{i-1} \\ q_{i } \\ q_{i+1} \\ \vdots \\ q_{n-4} \\ q_{n-3} \\ q_{n-2} - u_{n-2} x_{n-1} \end{bmatrix}. Note that we kick out :math:`x_{n-1}` from the left-hand side, and the resulting system is now tri-diagonal with the size of :math:`n - 1`. For notational simplicity, hereafter we write this system as .. math:: A_{ij} x_j = b_i. Although this is a purely tri-diagonal system (i.e., without perturbed elements), we cannot perform forward sweep as an unknown :math:`x_{n - 1}` exists in the right-hand-side vector. To circumvent this issue, we split the system into two sub problems: .. math:: A_{ij} x_j^{\prime} & = b_i^{\prime}, A_{ij} x_j^{\prime\prime} & = b_i^{\prime\prime}, where .. math:: b_i^{\prime} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ \vdots \\ q_{i-1} \\ q_{i } \\ q_{i+1} \\ \vdots \\ q_{n-4} \\ q_{n-3} \\ q_{n-2} \end{bmatrix}, b_i^{\prime\prime} = \begin{bmatrix} - l_0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ - u_{n-2} \end{bmatrix}, which satisfy .. math:: & x_j = x_j^{\prime} + x_{n-1} x_j^{\prime\prime}, & b_i = b_i^{\prime} + x_{n-1} b_i^{\prime\prime}, and thus the solution :math:`x_j` is found as the superposition of the solution of these two sub systems. To find :math:`x_{n - 1}`, we look at the :math:`n - 1`-th row of the original system: .. math:: u_{n - 1} x_0 + l_{n - 1} x_{n - 2} + c_{n - 1} x_{n - 1} = q_{n - 1}. By assigning .. math:: x_0 & = x_0^{\prime} + x_{n - 1} x_0^{\prime\prime}, x_{n - 2} & = x_{n - 2}^{\prime} + x_{n - 1} x_{n - 2}^{\prime\prime}, we notice .. math:: \left( u_{n - 1} x_0^{\prime} + l_{n - 1} x_{n - 2}^{\prime} \right) + \left( u_{n - 1} x_0^{\prime\prime} + l_{n - 1} x_{n - 2}^{\prime\prime} + c_{n - 1} \right) x_{n - 1} = q_{n - 1}, and thus .. math:: x_{n - 1} = \frac{ q_{n - 1} - u_{n - 1} x_0^{\prime} - l_{n - 1} x_{n - 2}^{\prime} }{ c_{n - 1} + u_{n - 1} x_0^{\prime\prime} + l_{n - 1} x_{n - 2}^{\prime\prime} }. To summarize, the perturbed system is solved as follows. #. Prepare the right-hand-side vector of a sub system :math:`b_i^{\prime\prime}`: .. myliteralinclude:: /../../NumericalMethod/LinearSystem/ThomasAlgorithm/perturbed/src/tri_diagonal_solver.c :language: c :tag: prepare a sub system #. Solve two sub systems: Forward sweep: .. myliteralinclude:: /../../NumericalMethod/LinearSystem/ThomasAlgorithm/perturbed/src/tri_diagonal_solver.c :language: c :tag: divide the first row by center-diagonal term .. myliteralinclude:: /../../NumericalMethod/LinearSystem/ThomasAlgorithm/perturbed/src/tri_diagonal_solver.c :language: c :tag: forward sweep all rows .. myliteralinclude:: /../../NumericalMethod/LinearSystem/ThomasAlgorithm/perturbed/src/tri_diagonal_solver.c :language: c :tag: forward sweep the last row Backward substitution: .. myliteralinclude:: /../../NumericalMethod/LinearSystem/ThomasAlgorithm/perturbed/src/tri_diagonal_solver.c :language: c :tag: backward substitution #. Couple the result of two sub systems: .. myliteralinclude:: /../../NumericalMethod/LinearSystem/ThomasAlgorithm/perturbed/src/tri_diagonal_solver.c :language: c :tag: couple two systems to find the answer