#################### Gaussian elimination #################### We consider a linear system of size :math:`n`: .. math:: A_{ij} x_j = b_i, or explicitly .. math:: \newcommand{\x}[2]{a_{#1,#2}} \newcommand{\y}[1]{x_{#1}} \newcommand{\z}[1]{b_{#1}} \begin{bmatrix} \x{ 0}{ 0} & \x{ 0}{ 1} & \cdots & \x{ 0}{i-1} & \x{ 0}{i } & \x{ 0}{i+1} & \cdots & \x{ 0}{n-2} & \x{ 0}{n-1} \\ \x{ 1}{ 0} & \x{ 1}{ 1} & \cdots & \x{ 1}{i-1} & \x{ 1}{i } & \x{ 1}{i+1} & \cdots & \x{ 1}{n-2} & \x{ 1}{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ \x{i-1}{ 0} & \x{i-1}{ 1} & \cdots & \x{i-1}{i-1} & \x{i-1}{i } & \x{i-1}{i+1} & \cdots & \x{i-1}{n-2} & \x{i-1}{n-1} \\ \x{i }{ 0} & \x{i }{ 1} & \cdots & \x{i }{i-1} & \x{i }{i } & \x{i }{i+1} & \cdots & \x{i }{n-2} & \x{i }{n-1} \\ \x{i+1}{ 0} & \x{i+1}{ 1} & \cdots & \x{i+1}{i-1} & \x{i+1}{i } & \x{i+1}{i+1} & \cdots & \x{i+1}{n-2} & \x{i+1}{n-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \x{n-2}{ 0} & \x{n-2}{ 1} & \cdots & \x{n-2}{i-1} & \x{n-2}{i } & \x{n-2}{i+1} & \cdots & \x{n-2}{n-2} & \x{n-2}{n-1} \\ \x{n-1}{ 0} & \x{n-1}{ 1} & \cdots & \x{n-1}{i-1} & \x{n-1}{i } & \x{n-1}{i+1} & \cdots & \x{n-1}{n-2} & \x{n-1}{n-1} \\ \end{bmatrix} \begin{bmatrix} \y{ 0} \\ \y{ 1} \\ \vdots \\ \y{i-1} \\ \y{i } \\ \y{i+1} \\ \vdots \\ \y{n-2} \\ \y{n-1} \\ \end{bmatrix} = \begin{bmatrix} \z{ 0} \\ \z{ 1} \\ \vdots \\ \z{i-1} \\ \z{i } \\ \z{i+1} \\ \vdots \\ \z{n-2} \\ \z{n-1} \\ \end{bmatrix}. For notational simplicity, we consider the following augmented matrix: .. math:: \begin{bmatrix} \x{ 0}{ 0} & \x{ 0}{ 1} & \cdots & \x{ 0}{i-1} & \x{ 0}{i } & \x{ 0}{i+1} & \cdots & \x{ 0}{n-2} & \x{ 0}{n-1} & \z{ 0} \\ \x{ 1}{ 0} & \x{ 1}{ 1} & \cdots & \x{ 1}{i-1} & \x{ 1}{i } & \x{ 1}{i+1} & \cdots & \x{ 1}{n-2} & \x{ 1}{n-1} & \z{ 1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ \x{i-1}{ 0} & \x{i-1}{ 1} & \cdots & \x{i-1}{i-1} & \x{i-1}{i } & \x{i-1}{i+1} & \cdots & \x{i-1}{n-2} & \x{i-1}{n-1} & \z{i-1} \\ \x{i }{ 0} & \x{i }{ 1} & \cdots & \x{i }{i-1} & \x{i }{i } & \x{i }{i+1} & \cdots & \x{i }{n-2} & \x{i }{n-1} & \z{i } \\ \x{i+1}{ 0} & \x{i+1}{ 1} & \cdots & \x{i+1}{i-1} & \x{i+1}{i } & \x{i+1}{i+1} & \cdots & \x{i+1}{n-2} & \x{i+1}{n-1} & \z{i+1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \x{n-2}{ 0} & \x{n-2}{ 1} & \cdots & \x{n-2}{i-1} & \x{n-2}{i } & \x{n-2}{i+1} & \cdots & \x{n-2}{n-2} & \x{n-2}{n-1} & \z{n-2} \\ \x{n-1}{ 0} & \x{n-1}{ 1} & \cdots & \x{n-1}{i-1} & \x{n-1}{i } & \x{n-1}{i+1} & \cdots & \x{n-1}{n-2} & \x{n-1}{n-1} & \z{n-1} \\ \end{bmatrix}. ************* Forward sweep ************* After forward-sweeping up to the :math:`i - 1`-th row, we have .. include:: math/1.txt The :math:`i`-th row is normalized (divided by :math:`\x{i}{i}`) to obtain .. include:: math/2.txt .. myliteralinclude:: /../../NumericalMethod/LinearSystem/GaussianElimination/src/gaussian_elimination.c :language: c :tag: normalize i-th row The new :math:`i`-th row is utilized to eliminate the :math:`i`-th column: .. include:: math/3.txt .. myliteralinclude:: /../../NumericalMethod/LinearSystem/GaussianElimination/src/gaussian_elimination.c :language: c :tag: eliminate lower-triangular part ********************* Backward substitution ********************* After the forward sweep, we have .. math:: \begin{bmatrix} 1 & \x{ 0}{ 1} & \cdots & \x{ 0}{i-1} & \x{ 0}{i } & \x{ 0}{i+1} & \cdots & \x{ 0}{n-2} & \x{ 0}{n-1} & \z{ 0} \\ 0 & 1 & \cdots & \x{ 1}{i-1} & \x{ 1}{i } & \x{ 1}{i+1} & \cdots & \x{ 1}{n-2} & \x{ 1}{n-1} & \z{ 1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \x{i-1}{i } & \x{i-1}{i+1} & \cdots & \x{i-1}{n-2} & \x{i-1}{n-1} & \z{i-1} \\ 0 & 0 & \cdots & 0 & 1 & \x{i }{i+1} & \cdots & \x{i }{n-2} & \x{i }{n-1} & \z{i } \\ 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & \x{i+1}{n-2} & \x{i+1}{n-1} & \z{i+1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 & \x{n-2}{n-1} & \z{n-2} \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 1 & \y{n-1} \\ \end{bmatrix}. Starting from the bottom (:math:`n - 1`-th) row, the upper-triangular elements are eliminated. After backward-substituting up to the :math:`i + 1`-th row, we have .. math:: \begin{bmatrix} \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \x{i-1}{i } & \x{i-1}{i+1} & \cdots & \x{i-1}{n-2} & \x{i-1}{n-1} & \z{i-1} \\ 0 & 0 & \cdots & 0 & 1 & \x{i }{i+1} & \cdots & \x{i }{n-2} & \x{i }{n-1} & \z{i } \\ 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & \x{i+1}{n-2} & \x{i+1}{n-1} & \y{i+1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \end{bmatrix}. .. myliteralinclude:: /../../NumericalMethod/LinearSystem/GaussianElimination/src/gaussian_elimination.c :language: c :tag: backward substitution