################################## Shifted discrete Fourier transform ################################## By taking the sampling points differently: .. math:: x_n = \frac{ 2 n + 1 }{ 2 } \frac{ L }{ N }, we obtain .. math:: F_k & = \sum_{n = 0}^{N - 1} f_n \twiddle{- 2 \pi}{k \left( n + \frac{1}{2} \right)}{N}, f_n & = \frac{1}{N} \sum_{k = 0}^{N - 1} F_k \twiddle{2 \pi}{k \left( n + \frac{1}{2} \right)}{N}, which is known as `the shifted discrete Fourier transform `_ and appears when dealing with symmetric signals. .. seealso:: * :ref:`Discrete cosine transform ` * :ref:`Discrete sine transform `