.. _mathematical_formulation_fourier_series: ############## Fourier series ############## We consider a one-dimensional periodic signal :math:`f \left( x \right) \in \mathbb{C}` with :math:`x \in \left[ 0, L \right)`. The Fourier series expansion of this signal is given by .. math:: f \left( x \right) = \sum_{k = - \infty}^{\infty} F_k \twiddle{2 \pi}{k x}{L}, where :math:`k \in \mathbb{Z}`, :math:`F_k \in \mathbb{C}`, and :math:`I` is the imaginary unit :math:`\sqrt{-1}`. A weighted average of this relation in the given range: .. math:: \frac{1}{L} \int_{0}^{L} f \left( x \right) \twiddle{- 2 \pi}{k x}{L} dx yields .. math:: & \frac{1}{L} \int_{0}^{L} \sum_{l = - \infty}^{\infty} F_l \twiddle{2 \pi}{l x}{L} \twiddle{- 2 \pi}{k x}{L} dx = & \frac{1}{L} \sum_{l = - \infty}^{\infty} F_l \int_{0}^{L} \twiddle{2 \pi}{\left( l - k \right) x}{L} dx \,\, \left( \text{N.B. integral and summation are interchanged} \right) = & \sum_{l = - \infty}^{\infty} F_l \delta_{lk} = & F_k, which is used to find :math:`F_k` from :math:`f \left( x \right)`. Here we utilize the periodicity: .. math:: \frac{1}{L} \int_{0}^{L} \twiddle{2 \pi}{n x}{L} dx = \delta_{n0} with :math:`n \in \mathbb{Z}`.